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Spectral Clustering
1. Define affinity matrix 𝑲 2. Compute normalized affinity 𝑨

3. Compute embedding of the data from 
eigenvectors of Laplacian 𝑳 = 𝑫𝑨 − 𝑨

4. Cluster the embedding



Spectral Clustering
1. Define affinity matrix 𝑲 2. Compute normalized affinity 𝑨

• Clustering performance depends on affinity quality

• How to define/normalize affinity?



Ideal Affinity for Clustering
• No False Connections (NFC) for 

points between different clusters
• Connectivity: points within the 

same cluster are well connected



How to Define a Good Affinity for Spectral Clustering?

• Design affinity based on data geometry
• Clusters are centroids
• Clusters are linear subspaces [1-4]

Most works only guarantee
NFC but not connectivity

[1] E. Elhamifar and R. Vidal, Sparse Subspace Clustering, 2009.
[2] G. Liu et al, Robust Subspace Segmentation by Low-Rank Representation, 2010.
[3] C. Lu et al, Robust and Efficient Subspace Segmentation via Least Squares Regression, 2012.
[4] C. You et al, Oracle based active set algorithm for scalable elastic net subspace clustering, 2016.

We give guarantees on both 
NFC and connectivity

Define affinity matrix 𝑲



How to Define a Good Affinity for Spectral Clustering?

• Use normalization to clean up affinity?
• Sparsify the affinity by thresholding

[1] Shi, J. and Malik, J. Normalized cuts and image segmentation, 2000.
[2] Zass, and Shashua, Doubly Stochastic Normalization for Spectral Clustering, 2006.
[3] Lim et al, Doubly stochastic subspace clustering, 2020.

❌

Define affinity matrix 𝑲 Normalized 𝑨 by thresholding 𝑲



How to Define a Good Affinity for Spectral Clustering?

[1] Shi, J. and Malik, J. Normalized cuts and image segmentation, 2000.
[2] Zass, and Shashua, Doubly Stochastic Normalization for Spectral Clustering, 2006.
[3] Lim et al, Doubly stochastic subspace clustering, 2020.

• Use normalization to clean up affinity?
• Sparsify the affinity by thresholding
• Normalized cut [1]
❌

❌

Define affinity matrix 𝑲 Symmetric normalized affinity 𝑨



How to Define a Good Affinity for Spectral Clustering?

[1] Shi, J. and Malik, J. Normalized cuts and image segmentation, 2000.
[2] Zass, and Shashua, Doubly Stochastic Normalization for Spectral Clustering, 2006.
[3] Lim et al, Doubly stochastic subspace clustering, 2020.

• Use normalization to clean up affinity?
• Sparsify the affinity by thresholding
• Normalized cut [1]
• Doubly stochastic projection [2,3]

❌

❌

✅

Define affinity matrix 𝑲 Doubly stochastic normalized 𝑨



Why Doubly Stochastic Projection?

• 𝒜 : the set of doubly stochastic matrices
– Normalized cut ≈ the closest matrix in 𝒜 to 𝑲 under KL divergence [1]
– Doubly stochastic projection ∶= the closest matrix in 𝒜 to 𝑲 under ℓ! metric

• Doubly stochastic projection achieves SOTA clustering performance [2]
– E.g., 98.4% clustering accuracy on COIL-100, 99% on MNIST

• Theoretical understanding?     This paper: ✅
[1] Zass, and Shashua, Doubly Stochastic Normalization for Spectral Clustering, 2006.
[2] Lim et al, Doubly stochastic subspace clustering, 2020.

Define affinity matrix 𝑲 Doubly stochastic normalized 𝑨



Contributions

• Provable guarantees for 𝑨 to have no false connections and be well-connected
• Additional guarantees for subspace clustering (each cluster is a subspace)

– Guarantees depend on interpretable quantities (angles between subspaces, etc.)

Define affinity matrix 𝑲 Doubly stochastic normalized 𝑨

✅

✅



Doubly Stochastic Normalization
• Given input affinity 𝑲 = 𝑲" ∈ ℝ𝒏×𝒏, doubly stochastic normalized 𝐀∗ is given by

𝐀∗ = argmin
𝑨∈𝒜

𝑨 − (
)𝑲 𝑭

✅ Compute the spectral embedding directly from 𝐀∗

set of doubly stochastic matrices
𝜂 > 0: parameter such that 𝐀∗ is sparser as 𝜂 ↓



Theorem: Optimality Conditions

• Problem: Hard to bound 𝜶∗ due to (#) coupling among different clusters

• 𝑨∗ has no false connections            
⇔ 𝐾+, ≤ 𝛼+∗ + 𝛼,∗ for inter 
cluster connections 𝑖, 𝑗

• 𝑨∗ is well connected ⇔
𝐾+, > 𝛼+∗ + 𝛼,∗ for intra 
cluster connections 𝑖, 𝑗

min
𝑨∈𝒜

𝑨 −
1
𝜂𝑲 -

𝐴+,∗ =
1
𝜂
ReLU(𝐾+, − 𝛼+∗ − 𝛼,∗)

𝜶∗ ∈ ℝ.:
1
𝑛
I
,/(

.

max(𝐾+, − 𝛼+∗ − 𝛼,∗, 0)=𝜂 , ∀𝑖 (#)



Theorem: Decoupling is equivalent to NFC 
Given input affinity 𝑲 = 𝑲" ∈ ℝ.×. and sparsity parameter 𝜂, 

• 𝑨∗ has no false connections ⇔ 𝜶∘ ≔

𝛼 (

𝛼 1

𝛼 2

𝛼 3

𝛼 4

= 𝜶∗

• 𝜶(6) is a solution to (#) of the submatrix of intra-cluster connections of cluster 𝑙

• Bounding 𝜶∘ is much easier✅



Theorem: Subspace Clustering (Informal)
• Subspace clustering

– clustering data from a union of low-dimensional linear subspaces
– each subspace defines a cluster

• We prove: 𝑨∗ has no false connection if the subspaces
– are sufficiently separated in angle, or 
– have sufficiently low dimensions, or 
– are well balanced in terms of number of points.

• We also guarantee connectivity!

✅

✅
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