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Spectral Clustering

1. Define affinity matrix K 2. Compute normalized affinity 4
— ,) |

3. Compute embedding of the data from
eigenvectors of Laplacian L=D, — A

A

4. Cluster the embedding
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Spectral Clustering

1. Define affinity matrix K 2. Compute normalized affinity 4

Clustering performance depends on affinity quality

How to define/normalize affinity?
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|ldeal Affinity for Clustering

* No False Connections (NFC) for « Connectivity: points within the
points between different clusters same cluster are well connected
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How to Define a Good Affinity for Spectral Clustering?

Define affinity matrix K

« Design affinity based on data geometry Most works only guarantee

» Clusters are centroids NFC but not connectivity
» Clusters are linear subspaces [1-4]

We give guarantees on both
NFC and connectivity

[1] E. Elhamifar and R. Vidal, Sparse Subspace Clustering, 2009.

[2] G. Liu et al, Robust Subspace Segmentation by Low-Rank Representation, 2010.

[3] C. Lu et al, Robust and Efficient Subspace Segmentation via Least Squares Regression, 2012.
[4]1 C. You et al. Oracle based active set algorithm for scalable elastic net subspace clustering. 2016.
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How to Define a Good Affinity for Spectral Clustering?

Define affinity matrix K Normalized A by thresholding K

« Use normalization to clean up affinity?
X Sparsify the affinity by thresholding

[1] Shi, J. and Malik, J. Normalized cuts and image segmentation, 2000.

—
[2] Zass, and Shashua, Doubly Stochastic Normalization for Spectral Clustering, 2006. qw JOHNS HOPKINS

[3] Lim et al, Doubly stochastic subspace clustering, 2020. MATHEMATICAL INSTITUTE
for DATA SCIENCE




How to Define a Good Affinity for Spectral Clustering?

Define affinity matrix K Symmetric normalized affinity 4

« Use normalization to clean up affinity?

X Sparsify the affinity by thresholding
X Normalized cut [1]

[1] Shi, J. and Malik, J. Normalized cuts and image segmentation, 2000.
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[2] Zass, and Shashua, Doubly Stochastic Normalization for Spectral Clustering, 2006. q;.:,' JOHNS HOPKINS

[3] Lim et al, Doubly stochastic subspace clustering, 2020. MATHEMATICAL INSTITUTE
for DATA SCIENCE




How to Define a Good Affinity for Spectral Clustering?

Define affinity matrix K Doubly stochastic normalized A

e

« Use normalization to clean up affinity?
X Sparsify the affinity by thresholding
X Normalized cut [1]
Doubly stochastic projection [2,3]

[1] Shi, J. and Malik, J. Normalized cuts and image segmentation, 2000.

—
[2] Zass, and Shashua, Doubly Stochastic Normalization for Spectral Clustering, 2006. qw JOHNS HOPKINS

[3] Lim et al, Doubly stochastic subspace clustering, 2020. MATHEMATICAL INSTITUTE
for DATA SCIENCE




Why Doubly Stochastic Projection?

Define affinity matrix K Doubly stochastic normalized A

e

» A :the set of doubly stochastic matrices
— Normalized cut ~ the closest matrix in A to K under KL divergence [1]
— Doubly stochastic projection := the closest matrix in A to K under £, metric

« Doubly stochastic projection achieves SOTA clustering performance [2]
— E.g., 98.4% clustering accuracy on COIL-100, 99% on MNIST

Theoretical understanding?  This paper:

[1] Zass, and Shashua, Doubly Stochastic Normalization for Spectral Clustering, 2006.

[/
[2] Lim et al, Doubly stochastic subspace clustering, 2020. ﬁi.y JOHNS HOPKINS
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Contributions

Define affinity matrix K Doubly stochastic normalized A

e

Provable guarantees for A to have no false connections and be well-connected

Additional guarantees for subspace clustering (each cluster is a subspace)
— Guarantees depend on interpretable quantities (angles between subspaces, etc.)

QP JOHNS HOPKINS

MATHEMATICAL INSTITUTE
for DATA SCIENCE



Doubly Stochastic Normalization

- Given input affinity K = KT € R™", doubly stochastic normalized A* is given by

. 1
A* = argmin HA — —KH
AEA 1 F

set of doubly stochastic matrices / j
n > 0: parameter such that A* is sparserasn |

Original n =.002 n =.004 n=.01

Low

Compute the spectral embedding directly from A*
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Theorem: Optimality Conditions

. 1 1%
nun A—EKF a* € R™ EZmax(K]—a —a;,0)=n,vi (#)
=1
1 k
Al] _ERGLU(KU a; —C(J)
« A* has no false connections « A'lis we*ll cognec’Fed S
< Kij < a; + qj for inter Kij > a; + a; forintra
cluster connections i, j cluster connections i, j

* Problem: Hard to bound a* due to (#) coupling among different clusters

QP JOHNS HOPKINS

MATHEMATICAL INSTITUTE
for DATA SCIENCE



Theorem: Decoupling is equivalent to NFC

Given input affinity K = K € R™" and sparsity parameter n,

e A* has no false connections

o aW is a solution to (#) of the submatrix of intra-cluster connections of cluster !

Bounding a° is much easier
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Theorem: Subspace Clustering (Informal)

* Subspace clustering
— clustering data from a union of low-dimensional linear subspaces
— each subspace defines a cluster

We prove: A* has no false connection if the subspaces
— are sufficiently separated in angle, or
— have sufficiently low dimensions, or
— are well balanced in terms of number of points.

We also guarantee connectivity!
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More Information

Research supported by NSF grant 1704458 and Northrop Grumman Mission Systems
Research in Applications for Learning Machines (REALM) initiative.

Vision Lab @ JHU
http://www.vision.jhu.edu

Center for Imaging Science @ JHU
http://www.cis.jhu.edu

Mathematical Institute for Data Science @ JHU
http://www.minds.jhu.edu

Thank You!
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