

JHU Vision lab

Understanding Doubly Stochastic Clustering

Tianjiao Ding[†], Derek Lim[‡], René Vidal[†], Benjamin D. Haeffele[†]

†Mathematical Institute for Data Science, Johns Hopkins University ‡Computer Science & Artificial Intelligence Laboratory, Massachusetts Institute of Technology

Spectral Clustering

1. Define affinity matrix *K*

3. Compute embedding of the data from eigenvectors of Laplacian $L = D_A - A$

4. Cluster the embedding

Spectral Clustering

1. Define affinity matrix *K*

2. Compute normalized affinity A

- Clustering performance depends on affinity quality
- How to define/normalize affinity?

Ideal Affinity for Clustering

 No False Connections (NFC) for points between different clusters

 Connectivity: points within the same cluster are well connected

Define affinity matrix **K**

- Design affinity based on data geometry
 - Clusters are centroids
 - Clusters are linear subspaces [1-4]

Most works only guarantee NFC but not connectivity

We give guarantees on both NFC and connectivity

^[1] E. Elhamifar and R. Vidal, Sparse Subspace Clustering, 2009.

^[2] G. Liu et al, Robust Subspace Segmentation by Low-Rank Representation, 2010.

^[3] C. Lu et al, Robust and Efficient Subspace Segmentation via Least Squares Regression, 2012.

Define affinity matrix **K**

Normalized A by thresholding K

- Use normalization to clean up affinity?
 - X Sparsify the affinity by thresholding

^[2] Zass, and Shashua, Doubly Stochastic Normalization for Spectral Clustering, 2006.

^[3] Lim et al, Doubly stochastic subspace clustering, 2020.

Define affinity matrix **K**

Symmetric normalized affinity A

- Use normalization to clean up affinity?
 - X Sparsify the affinity by thresholding
 - Normalized cut [1]

^[2] Zass, and Shashua, Doubly Stochastic Normalization for Spectral Clustering, 2006.

^[3] Lim et al, Doubly stochastic subspace clustering, 2020.

Define affinity matrix **K**

Doubly stochastic normalized A

- Use normalization to clean up affinity?
 - X Sparsify the affinity by thresholding
 - X Normalized cut [1]
 - ✓ Doubly stochastic projection [2,3]

^[2] Zass, and Shashua, Doubly Stochastic Normalization for Spectral Clustering, 2006.

Why Doubly Stochastic Projection?

Define affinity matrix **K**

Doubly stochastic normalized A

- \mathcal{A} : the set of doubly stochastic matrices
 - Normalized cut \approx the closest matrix in \mathcal{A} to \mathbf{K} under KL divergence [1]
 - Doubly stochastic projection := the closest matrix in \mathcal{A} to K under ℓ_2 metric
- Doubly stochastic projection achieves SOTA clustering performance [2]
 - E.g., 98.4% clustering accuracy on COIL-100, 99% on MNIST

Theoretical understanding?

This paper:

Contributions

Define affinity matrix **K**

Doubly stochastic normalized A

- Provable guarantees for A to have no false connections and be well-connected
- Additional guarantees for subspace clustering (each cluster is a subspace)
 - Guarantees depend on interpretable quantities (angles between subspaces, etc.)

Doubly Stochastic Normalization

• Given input affinity $K = K^{T} \in \mathbb{R}^{n \times n}$, doubly stochastic normalized A^{*} is given by

$$\mathbf{A}^* = \underset{A \in \mathcal{A}}{\operatorname{argmin}} \left\| A - \frac{1}{\eta} K \right\|_{F}$$

set of doubly stochastic matrices

 $\eta > 0$: parameter such that \mathbf{A}^* is sparser as $\eta \downarrow$

✓ Compute the spectral embedding directly from A*

Theorem: Optimality Conditions

$$\min_{A \in \mathcal{A}} \left\| A - \frac{1}{\eta} K \right\|_{F}$$

$$\boldsymbol{\alpha}^* \in \mathbb{R}^n$$
: $\frac{1}{n} \sum_{j=1}^n \max(K_{ij} - \alpha_i^* - \alpha_j^*, 0) = \eta$, $\forall i$ (#)

$$A_{ij}^* = \frac{1}{\eta} \operatorname{ReLU}(K_{ij} - \alpha_i^* - \alpha_j^*)$$

• A^* has no false connections $\Leftrightarrow K_{ij} \leq \alpha_i^* + \alpha_j^*$ for inter cluster connections i, j

- A^* is well connected \Leftrightarrow $K_{ij} > \alpha_i^* + \alpha_j^*$ for intra cluster connections i, j
- Problem: Hard to bound α^* due to (#) coupling among different clusters

Theorem: Decoupling is equivalent to NFC

Given input affinity $K = K^T \in \mathbb{R}^{n \times n}$ and sparsity parameter η ,

A* has no false connections ⇔

- $\alpha^{(l)}$ is a solution to (#) of the submatrix of intra-cluster connections of cluster l
- lacksquare Bounding $lpha^\circ$ is much easier

Theorem: Subspace Clustering (Informal)

- Subspace clustering
 - clustering data from a union of low-dimensional linear subspaces
 - each subspace defines a cluster

- ightharpoonup We prove: A^* has no false connection if the subspaces
 - are sufficiently separated in angle, or
 - have sufficiently low dimensions, or
 - are well balanced in terms of number of points.

We also guarantee connectivity!

More Information

Research supported by NSF grant 1704458 and Northrop Grumman Mission Systems Research in Applications for Learning Machines (REALM) initiative.

Vision Lab @ JHU http://www.vision.jhu.edu

Center for Imaging Science @ JHU http://www.cis.jhu.edu

Mathematical Institute for Data Science @ JHU http://www.minds.jhu.edu

Thank You!

