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 A common assumption in unsupervised anomaly detection is that clean training data is available.

What if the training data is not clean and already contains some anomalies?

 A dataset of financial transactions could contain unnoticed fraudulent activities

Motivation
Deep Anomaly Detection with Contaminated Data
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Blind update 

on unlabeled dataset

A clear performance degradation 
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Motivation
Deep Anomaly Detection with Contaminated Data
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When the contaminated data is well labeled,  the model learns the decision boundary very well.

Unexploited information is hidden in the contaminated data.

Supervised update 

on labeled dataset

Blind update 

on unlabeled dataset
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Contribution & Problem setup
Deep Anomaly Detection with Contaminated Data
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Our contribution:  Latent Outlier Exposure (LOE), a new general strategy for training deep anomaly 

detection models with contaminated data.

 Problem setup: we consider a set of samples 𝑥𝑖 that contains many normal samples and a few 

anomalies.



Chen Qiu, Aodong Li, Marius Kloft, Maja Rudolph, Stephan Mandt | 2022-06-13

© Robert Bosch GmbH 2022. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Consider a joint loss function with two loss terms (given the binary anomaly label 𝑦𝑖):

 : a normal loss that is designed to be minimized over normal data.

 : an abnormal loss that is designed to have the opposite effect. 

 E.g., for deep SVDD,                                        and                                         .

Proposed loss
Latent Outlier Exposure
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Optimization
Latent Outlier Exposure
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 Problem: the anomaly labels 𝑦 are not observed in practice.

 Key idea: infer the anomaly labels during training 

Constrained minimization problem:

s.t.

where 𝛼 is an assumed contamination rate (hyperparameter), and 𝑁 is the number of samples.
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Optimization
Latent Outlier Exposure
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Block coordinate update :

 To update 𝜃, we fix 𝑦 and minimize           over 𝜃.

 To infer 𝑦 given 𝜃, we minimize           subject to the constraint. 

 Rank samples according to                                     and assign 1 to the top 𝛼 fraction, and 0 to the rest. 
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Latent Outlier Exposure
Model extension & Anomaly score

 Soft latent outlier exposure:

 Avoid being overconfident in assigning labels

 Treat the identified anomalies as uncertain

 Anomaly score at the test time:

 Avoid the overfitting to anomalies encountered 

during training
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Toy experiment
Latent Outlier Exposure

9

 Soft LOE and hard LOE learn the boundary of normal and abnormal samples successfully, 

while the “Blind” and “Refine” baselines do not.

(a) “Blind” (b) “Refine” (c) LOE_S (d) LOE_H
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Experiment setup
Latent Outlier Exposure
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Datasets: image data, video data, and tabular data

Corrupt the training set: we mix a fraction of 𝛼0 abnormal samples into the normal training set.

Image data Video data Tabular data
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Quantitative results
Latent Outlier Exposure
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 LOE outperforms the baselines on image data, video data, and tabular data when combining with

various deep anomaly detection models. 
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Experiment results on various contamination ratios
Latent Outlier Exposure
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 LOE shows considerable robustness to different contamination ratios.
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Sensitivity study on the misspecified contamination ratio
Latent Outlier Exposure
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 LOE shows considerable robustness against misspecified contamination ratios.
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