Latent Outlier Exposure For Anomaly Detection With Contaminated Data Chen Qiu*1,2, **Aodong Li*3**, Marius Kloft2, Maja Rudolph1, Stephan Mandt3 - 1: Bosch Center for Al - 2: Technical University Kaiserslautern, Germany - 3: University of California, Irvine, USA - * Equal Contribution ## Deep Anomaly Detection with Contaminated Data Motivation - ► A common assumption in unsupervised anomaly detection is that clean training data is available. - ▶ What if the training data is not clean and already contains some anomalies? - ► A dataset of financial transactions could contain unnoticed fraudulent activities ### Deep Anomaly Detection with Contaminated Data #### **Motivation** - ▶ When the contaminated data is well labeled, the model learns the decision boundary very well. - ▶ Unexploited information is hidden in the contaminated data. # Deep Anomaly Detection with Contaminated Data Contribution & Problem setup ► Our contribution: Latent Outlier Exposure (LOE), a new general strategy for training deep anomaly detection models with contaminated data. ▶ Problem setup: we consider a set of samples x_i that contains many normal samples and a few anomalies. ### Proposed loss \triangleright Consider a joint loss function with two loss terms (given the binary anomaly label y_i): $$\mathcal{L}(\theta, \mathbf{y}) = \sum_{i=1}^{N} (1 - y_i) \mathcal{L}_n^{\theta}(\mathbf{x}_i) + y_i \mathcal{L}_a^{\theta}(\mathbf{x}_i).$$ - \blacktriangleright $\mathcal{L}_n^{\theta}(\mathbf{x})$: a normal loss that is designed to be minimized over normal data. - \blacktriangleright $\mathcal{L}_{a}^{\theta}(\mathbf{x})$: an abnormal loss that is designed to have the opposite effect. - ▶ E.g., for deep SVDD, $\mathcal{L}_n^{\theta}(\mathbf{x}) = ||f_{\theta}(\mathbf{x}) \mathbf{c}||^2$ and $\mathcal{L}_a^{\theta}(\mathbf{x}) = 1/||f_{\theta}(\mathbf{x}) \mathbf{c}||^2$. #### **Optimization** - ▶ Problem: the anomaly labels *y* are not observed in practice. - ► Key idea: infer the anomaly labels during training - ► Constrained minimization problem: $$\min_{\theta} \min_{\mathbf{y} \in \mathcal{Y}} \mathcal{L}(\theta, \mathbf{y}) \quad \text{s.t.} \quad \mathcal{Y} = \{\mathbf{y} \in \{0, 1\}^N : \sum_{i=1}^N y_i = \alpha N\}$$ where α is an assumed contamination rate (hyperparameter), and N is the number of samples. ## **Optimization** #### Block coordinate update: - ▶ To update θ , we fix y and minimize $\mathcal{L}(\theta, y)$ over θ . - ▶ To infer y given θ , we minimize $\mathcal{L}(\theta, y)$ subject to the constraint. - ightharpoonup Rank samples according to $S_i^{train} = \mathcal{L}_n^{\theta}(\mathbf{x}_i) \mathcal{L}_a^{\theta}(\mathbf{x}_i)$ and assign 1 to the top α fraction, and 0 to the rest. #### Model extension & Anomaly score ► Soft latent outlier exposure: $$\mathcal{Y}' = \{ \mathbf{y} \in \{0, 0.5\}^N : \sum_{i=1}^N y_i = 0.5\alpha N \}.$$ - ► Avoid being overconfident in assigning labels - ▶ Treat the identified anomalies as uncertain ► Anomaly score at the test time: $$S_i^{test} = \mathcal{L}_n^{\theta}(\mathbf{x}_i).$$ Avoid the overfitting to anomalies encountered during training ### Toy experiment ► Soft LOE and hard LOE learn the boundary of normal and abnormal samples successfully, while the "Blind" and "Refine" baselines do not. #### **Experiment setup** - ▶ Datasets: image data, video data, and tabular data - \blacktriangleright Corrupt the training set: we mix a fraction of α_0 abnormal samples into the normal training set. Image data Video data Tabular data #### Quantitative results ► LOE outperforms the baselines on image data, video data, and tabular data when combining with various deep anomaly detection models. Table 1. AUC (%) with standard deviation for anomaly detection on CIFAR-10 and F-MNIST. For all experiments, we set the contamination ratio as 10%. LOE mitigates the performance drop when NTL and MHRot trained on the contaminated datasets. | | | CIFAR-10 | F-MNIST | |-------|----------------|---------------------|---------------------| | NTL | Blind | 91.3±0.1 (-4.4) | 85.0±0.2 (-9.7) | | | Refine | 93.5±0.1 (-2.2) | 89.1 ± 0.2 (-5.6) | | | LOE_H (ours) | 94.9 ± 0.2 (-0.8) | 92.9 ± 0.7 (-1.8) | | | LOE_S (ours) | 94.9 ± 0.1 (-0.8) | 92.5 ± 0.1 (-2.2) | | MHRot | Blind | 84.0±0.5 (-4.2) | 88.8±0.1 (-4.9) | | | Refine | 84.4±0.1 (-3.8) | 89.6 ± 0.2 (-4.1) | | | LOE_H (ours) | 86.4±0.5 (-1.8) | 91.4 ± 0.2 (-2.3) | | | LOE_S (ours) | 86.3±0.2 (-1.9) | 91.2 ± 0.4 (-2.5) | Table 4. AUC (%) for different contamination ratios for a video frame anomaly detection benchmark proposed in (Pang et al., 2020). LOE_S (proposed) achieves state-of-the-art performance. | Method | Contamination Ratio | | | | |------------------------------|---------------------|----------------|----------------|--| | | 10% | 20% | 30%* | | | (Tudor Ionescu et al., 2017) | - | - | 68.4 | | | (Liu et al., 2018) | - | - | 69.0 | | | (Del Giorno et al., 2016) | - | - | 59.6 | | | (Sugiyama & Borgwardt, 2013) | 55.0 | 56.0 | 56.3 | | | (Pang et al., 2020) | 68.0 | 70.0 | 71.7 | | | Blind | 85.2±1.0 | 76.0 ± 2.7 | 66.6 ± 2.6 | | | Refine | 82.7±1.5 | 74.9 ± 2.4 | 69.3 ± 0.7 | | | LOE_H (ours) | 82.3±1.6 | 59.6 ± 3.8 | 56.8 ± 9.5 | | | LOE_S (ours) | 86.8±1.2 | 79.2 ± 1.3 | 71.5±2.4 | | ^{*}Default setup in (Pang et al., 2020), corresponding to $\alpha_0 \approx 30\%$. Table 3. F1-score (%) for anomaly detection on 30 tabular datasets studied in (Anonymous, 2022). We set $\alpha_0 = \alpha = 10\%$ in all experiments. LOE (proposed) outperforms the "Blind" and "Refine" consistently. (See Tables 5 and 6 for more details, including AUCs.) | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | | NTL | | | ICL | | | | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------| | annthyroid 29.7±3.5 42.7±7.1 47.7±11.4 50.3±4.5 29.1±2.2 38.5±2.1 48.7±7.6 43.0±8.8 arrhythmia 57.6±2.5 59.1±2.1 62.1±2.8 62.7±3.3 53.9±0.7 60.9±2.2 62.4±1.8 63.6±2.1 50.4±1.8 93.1±0.9 95.6±0.4 95.3±0.4 92.6±1.1 93.4±1.0 96.0±0.6 95.7±0.6 cardio 21.8±4.9 45.2±7.9 73.0±7.9 57.8±5.5 50.2±4.5 56.2±3.4 71.1±3.2 62.2±2.7 ecoli 0.0±0.0 88.9±14.1 100.0±0.0 100.0±0.0 17.8±15.1 46.7±25.7 75.6±4.4 75.6±4.4 glass 11.1±7.0 15.6±5.4 17.8±5.4 20.0±8.3 89.4±4.1 11.1±0.0 11.1±7.0 8.9±8.3 ionosphere 89.0±1.5 91.0±2.0 91.0±1.7 91.3±2.2 86.5±1.1 85.9±2.3 85.7±2.8 88.6±0.6 kdd 95.9±0.0 96.0±1.1 98.1±0.4 98.4±0.1 99.3±0.1 99.3±0.1 99.4±0.1 99.5±0.0 99.4±0.0 kddrev 98.4±0.1 98.4±0.2 89.1±1.7 98.6±0.0 99.9±0.5 98.4±0.4 99.8±0.1 99.5±0.0 99.4±0.0 kddrev 98.4±0.1 84.0±2.2 89.1±1.7 98.6±0.0 99.9±0.5 98.4±0.4 98.8±0.1 98.2±0.4 kddrev 98.4±0.1 84.0±2.5 60.0±8.2 60.0±13.3 73.3±22.6 43.3±8.2 60.0±8.2 80.0±12.5 83.3±10.5 mammogra. 5.5±2.8 2.6±1.7 3.3±1.6 13.5±3.8 8.8±1.9 11.4±1.9 34.0±2.0 242.8±17.6 mist tabular 78.6±0.5 80.3±1.1 71.8±1.8 76.3±2.1 72.1±1.0 80.7±0.7 86.0±0.4 79.2±0.9 mulcross 45.5±9.6 58.2±3.5 58.2±6.2 50.1±8.9 70.4±13.4 94.4±6.3 100.0±0.0 99.9±0.1 policitis 0.2±0.3 1.5±0.3 98.8±0.4 100.0±0.0 100.0±0.0 62.2±3.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 | | Blind | Refine | LOE_H (ours) | | | Refine | LOE_H (ours) | LOE_S (ours) | | arrhythmia 57.6±2.5 59.1±2.1 62.1±2.8 62.7±3.3 53.9±0.7 60.9±2.2 62.4±1.8 63.6±2.1 breastw 84.0±1.8 93.1±0.9 95.6±0.4 95.3±0.4 92.6±1.1 93.4±1.0 96.0±0.6 95.7±0.6 cardio 21.8±4.9 45.2±7.9 73.0±7.9 57.8±5.5 50.2±4.5 56.2±3.4 71.1±3.2 62.2±2.7 ecoli 0.0±0.0 88.9±14.1 100.0±0.0 100.0±0.0 17.8±15.1 46.7±25.7 75.6±4.4 75.6±4.4 forest cover 20.4±4.0 56.2±4.9 61.1±34.9 67.6±30.6 9.2±4.5 8.0±3.6 6.8±3.6 11.1±2.1 glass 11.1±7.0 15.6±5.4 17.8±5.4 20.0±8.3 8.9±4.4 11.1±0.0 11.1±2.1 8.9±8.3 ionosphere 89.0±1.5 91.0±2.0 91.0±1.7 91.3±2.2 86.5±1.1 85.9±2.3 85.7±2.8 88.6±0.6 kddrev 98.4±0.1 98.4±0.1 98.4±0.1 99.3±0.1 99.3±0.1 99.4±0.1 99.5±0.0 99.4±0.0 k | | 37.9±13.4 | 55.2 ± 15.9 | 42.8 ± 26.9 | 59.3 ± 12.0 | 50.9 ± 1.5 | 54.3 ± 2.9 | 53.4 ± 5.2 | 51.7 ± 2.4 | | breastw 84.0±1.8 93.1±0.9 95.6±0.4 95.3±0.4 92.6±1.1 93.4±1.0 96.0±0.6 95.7±0.6 cardio 21.8±4.9 45.2±7.9 73.0±7.9 57.8±5.5 50.2±4.5 56.2±3.4 71.1±3.2 62.2±2.7 forest cover 20.4±4.0 56.2±4.9 61.1±34.9 67.6±30.6 9.2±4.5 8.0±3.6 6.8±3.6 11.1±7.0 glass 11.1±7.0 15.6±5.4 17.8±5.4 20.0±8.3 8.9±4.4 11.1±0.0 11.1±7.0 8.9±8.3 ionosphere 89.0±1.5 91.0±2.0 91.0±1.7 91.3±2.2 86.5±1.1 85.9±2.3 85.7±2.8 88.6±0.6 kddrev 98.4±0.1 98.4±0.2 89.1±1.7 98.6±0.0 97.9±0.5 98.4±0.4 98.8±0.1 99.2±0.0 lympho 53.3±12.5 60.0±8.2 60.0±13.3 73.3±22.6 43.0±2.5 51.2±3.7 54.4±5.6 47.2±4.9 lympho 53.3±12.5 60.0±8.2 60.0±13.3 73.3±22.6 43.3±8.2 60.0±8.2 80.0±12.5 83.3±10.5 | annthyroid | 29.7 ± 3.5 | 42.7 ± 7.1 | | | 29.1 ± 2.2 | 38.5 ± 2.1 | | 43.0 ± 8.8 | | cardio 21.8±4.9 45.2±7.9 73.0±7.9 57.8±5.5 50.2±4.5 56.2±3.4 71.1±3.2 62.2±2.7 ecoli 0.0±0.0 88.9±14.1 100.0±0.0 100.0±0.0 17.8±15.1 46.7±25.7 75.6±4.4 75.6±4.4 75.6±4.4 75.6±4.4 75.6±4.4 75.6±4.4 75.6±4.4 75.6±4.4 75.6±4.4 75.6±4.4 75.6±4.4 75.6±4.4 75.6±4.4 75.6±4.4 75.6±4.4 75.6±4.4 75.6±4.4 75.6±4.4 75.6±4.4 75.6±4.1 75.6±4.4 75.6±4.4 75.6±4.4 75.6±4.4 75.6±4.4 75.6±4.4 75.6±4.4 75.6±4.4 75.6±4.4 75.6±4.4 75.6±4.4 75.6±4.4 75.6±4.4 75.6±4.4 75.6±4.4 75.6±4.4 75.6±4.4 75.6±4.4 75.6±4.4 75.6±4.4 75.6±4.4 75.6±4.4 75.6±4.8 11.1±2.1 86.9±4.0 11.1±2.1 89.8±8.3 10.0±4.0 86.6±0.4 80.8±6.0 91.3±2.2 86.5±1.1 85.9±2.3 85.7±2.8 88.6±0.0 80.1±1.7 98.6±0.0 97.9±0.5 98.4±0.4 98.8±0.1 98.2±0.0 99. | arrhythmia | 57.6±2.5 | 59.1 ± 2.1 | 62.1 ± 2.8 | 62.7 ± 3.3 | 53.9 ± 0.7 | 60.9 ± 2.2 | 62.4 ± 1.8 | 63.6 ± 2.1 | | ecoli 0.0±0.0 88.9±14.1 100.0±0.0 100.0±0.0 17.8±15.1 46.7±25.7 75.6±4.4 75.6±4.4 forest cover 20.4±4.0 56.2±4.9 61.1±34.9 67.6±30.6 9.2±4.5 8.0±3.6 6.8±3.6 11.1±2.1 glass 11.1±7.0 15.6±5.4 17.8±5.4 20.0±8.3 8.9±4.4 11.1±0.0 11.1±7.0 8.9±8.3 ionosphere 89.0±1.5 91.0±2.0 91.0±1.7 91.3±2.2 86.5±1.1 85.9±2.3 85.7±2.8 88.6±0.6 kdd 95.9±0.0 96.0±1.1 98.1±0.4 98.4±0.1 99.3±0.1 99.4±0.1 99.5±0.0 99.4±0.0 kddrev 98.4±0.1 98.4±0.2 89.1±1.7 98.6±0.0 97.9±0.5 98.4±0.1 98.8±0.1 98.2±0.4 letter 36.4±3.6 44.4±3.1 25.4±10.0 45.6±10.6 43.0±2.5 51.2±3.7 54.4±5.6 47.2±4.9 lympho 53.3±12.5 60.0±8.2 60.0±13.3 73.3±2.6 43.3±8.2 60.0±8.2 80.0±12.5 83.3±10.5 mis | breastw | 84.0 ± 1.8 | 93.1 ± 0.9 | 95.6 ± 0.4 | 95.3 ± 0.4 | 92.6 ± 1.1 | 93.4 ± 1.0 | 96.0 ± 0.6 | 95.7 ± 0.6 | | forest cover glass 20.4±4.0 56.2±4.9 61.1±34.9 67.6±30.6 9.2±4.5 8.0±3.6 6.8±3.6 11.1±2.1 glass 11.1±7.0 15.6±5.4 17.8±5.4 20.0±8.3 8.9±4.4 11.1±0.0 11.1±7.0 8.9±8.3 ionosphere 89.0±1.5 91.0±2.0 91.0±1.7 91.3±2.2 86.5±1.1 85.9±2.3 85.7±2.8 88.6±0.6 kddrev 98.4±0.1 98.4±0.1 98.4±0.1 99.3±0.1 99.4±0.1 99.5±0.0 99.4±0.0 kddrev 98.4±0.1 98.4±0.2 89.1±1.7 98.6±0.0 97.9±0.5 98.4±0.4 98.8±0.1 98.2±0.4 letter 36.4±3.6 44.4±3.1 25.4±10.0 45.6±10.6 43.0±2.5 51.2±3.7 54.4±5.6 47.2±4.9 lympho 53.3±12.5 60.0±8.2 60.0±3.3 73.3±22.6 43.3±8.2 60.0±8.2 80.0±12.5 83.3±10.5 mist tabular 78.6±0.5 80.3±1.1 71.8±1.8 76.3±2.1 72.1±1.0 80.7±0.7 86.0±0.4 79.2±0.9 musk | cardio | 21.8±4.9 | 45.2 ± 7.9 | 73.0 ± 7.9 | 57.8 ± 5.5 | 50.2 ± 4.5 | 56.2 ± 3.4 | 71.1 ± 3.2 | 62.2 ± 2.7 | | glass ionosphere 89.0±1.5 91.0±2.0 91.0±1.7 91.3±2.2 86.5±1.1 85.9±2.3 85.7±2.8 88.6±0.6 kdd 95.9±0.0 96.0±1.1 98.1±0.4 98.4±0.1 99.3±0.1 99.4±0.1 99.5±0.0 99.4±0.0 kddrev 98.4±0.1 98.4±0.2 89.1±1.7 98.6±0.0 97.9±0.5 98.4±0.4 98.8±0.1 99.2±0.4 letter 36.4±3.6 44.4±3.1 25.4±10.0 45.6±10.6 43.0±2.5 51.2±3.7 54.4±5.6 47.2±4.9 lympho 53.3±12.5 60.0±8.2 60.0±13.3 73.3±22.6 43.3±8.2 60.0±8.2 80.0±12.5 83.3±10.5 mammogra. 5.5±2.8 2.6±1.7 3.3±1.6 13.5±3.8 8.8±1.9 11.4±1.9 34.0±20.2 42.8±17.6 mist tabular 78.6±0.5 80.3±1.1 71.8±1.8 76.3±2.1 72.1±1.0 80.7±0.7 86.0±0.4 79.2±0.9 mulcross 45.5±9.6 58.2±3.5 58.2±6.2 50.1±8.9 70.4±13.4 94.4±6.3 100.0±0.0 99.9±0.1 mulcross 10.2±0.3 98.8±0.4 100.0±0.0 100.0±0.0 6.2±3.0 100.0±0.0 100.0±0.0 100.0±0.0 optdigits 0.2±0.3 1.5±0.3 41.7±45.9 59.1±48.2 0.8±0.5 1.3±1.1 1.2±1.0 0.9±0.5 pendigits 5.0±2.5 32.6±10.0 79.4±4.7 81.9±4.3 10.3±4.6 30.1±8.5 80.3±6.1 88.6±2.2 pima 60.3±2.6 61.0±1.9 61.3±2.4 61.0±0.9 58.1±2.9 59.3±1.4 63.0±1.0 60.1±1.4 satellite 73.6±0.4 74.1±0.3 74.8±0.4 74.7±0.1 72.7±1.3 72.7±0.6 73.6±0.2 73.2±0.6 satimage 26.8±1.5 86.8±4.0 90.7±1.1 91.0±0.7 7.3±0.6 85.1±1.4 91.3±1.1 91.5±0.9 seismic 11.9±1.8 11.5±1.0 18.1±0.7 17.1±0.6 14.9±1.4 17.3±2.1 23.6±2.8 24.2±1.4 shuttle 97.0±0.3 97.0±0.2 97.1±0.2 97.0±0.2 96.6±0.2 96.7±0.1 96.9±0.1 97.0±0.2 speech 6.9±1.2 8.2±2.1 43.3±5.6 50.8±2.5 0.3±0.7 1.6±1.0 2.0±0.7 0.7±0.8 thyroid 43.4±5.5 55.1±4.2 82.4±2.7 82.4±2.3 45.8±7.3 71.6±2.4 83.2±2.9 74.4±8.0 wbc 25.7±12.3 45.7±15.5 76.2±6.0 69.5±3.8 50.5±5.7 50.5±2.3 61.0±4.7 61.0±1.9 | ecoli | 0.0 ± 0.0 | 88.9 ± 14.1 | 100.0 ± 0.0 | 100.0 ± 0.0 | 17.8 ± 15.1 | 46.7 ± 25.7 | 75.6 ± 4.4 | 75.6 ± 4.4 | | ionosphere kdd 89.0±1.5 91.0±2.0 91.0±1.7 91.3±2.2 86.5±1.1 85.9±2.3 85.7±2.8 88.6±0.6 kdd 95.9±0.0 96.0±1.1 98.1±0.4 98.4±0.1 99.3±0.1 99.4±0.1 99.5±0.0 99.4±0.0 kddrev 98.4±0.1 98.4±0.2 89.1±1.7 98.6±0.0 97.9±0.5 98.4±0.4 98.8±0.1 98.2±0.4 letter 36.4±3.6 44.4±3.1 25.4±10.0 45.6±10.6 43.0±2.5 51.2±3.7 54.4±5.6 47.2±4.9 lympho 53.3±12.5 60.0±8.2 60.0±13.3 73.3±22.6 43.3±8.2 60.0±8.2 80.0±12.5 83.3±10.5 mammogra. 75.5±2.8 2.6±1.7 3.3±1.6 13.5±3.8 8.8±1.9 11.4±1.9 34.0±20.2 42.8±17.6 mustross 45.5±9.6 58.2±3.5 58.2±6.2 50.1±8.9 70.4±13.4 94.4±6.3 100.0±0.0 99.9±0.1 mustross 45.5±9.6 58.2±3.5 58.2±6.2 50.1±8.9 70.4±13.4 94.4±6.3 100.0±0.0 99.9±0.1 | forest cover | 20.4 ± 4.0 | 56.2 ± 4.9 | 61.1 ± 34.9 | 67.6 ± 30.6 | 9.2 ± 4.5 | 8.0 ± 3.6 | 6.8 ± 3.6 | 11.1 ± 2.1 | | kdd 95.9±0.0 96.0±1.1 98.1±0.4 98.4±0.1 99.3±0.1 99.4±0.1 99.5±0.0 99.4±0.0 kddrev 98.4±0.1 98.4±0.2 89.1±1.7 98.6±0.0 97.9±0.5 98.4±0.4 98.8±0.1 98.2±0.4 letter 36.4±3.6 44.4±3.1 25.4±10.0 45.6±10.6 43.0±2.5 51.2±3.7 54.4±5.6 47.2±4.9 lympho 53.3±12.5 60.0±8.2 60.0±13.3 73.3±22.6 43.3±8.2 60.0±8.2 80.0±12.5 83.3±10.5 mammogra. 5.5±2.8 2.6±1.7 3.3±1.6 13.5±3.8 8.8±1.9 11.4±1.9 34.0±20.2 42.8±17.6 mist tabular 78.6±0.5 80.3±1.1 71.8±1.8 76.3±2.1 72.1±1.0 80.7±0.7 86.0±0.4 79.2±0.9 musk 21.0±3.3 98.8±0.4 100.0±0.0 100.0±0.0 6.2±3.0 100.0±0.0 100.0±0.0 99.9±0.1 musk 21.0±3.3 98.8±0.4 100.0±0.0 100.0±0.0 6.2±3.0 100.0±0.0 100.0±0.0 99.9±0.1 mu | glass | 11.1±7.0 | 15.6 ± 5.4 | 17.8 ± 5.4 | | 8.9 ± 4.4 | 11.1 ± 0.0 | 11.1 ± 7.0 | 8.9 ± 8.3 | | kddrev 98.4±0.1 98.4±0.2 89.1±1.7 98.6±0.0 97.9±0.5 98.4±0.4 98.8±0.1 98.2±0.4 letter 36.4±3.6 44.4±3.1 25.4±10.0 45.6±10.6 43.0±2.5 51.2±3.7 54.4±5.6 47.2±4.9 lympho 53.3±12.5 60.0±8.2 60.0±13.3 73.3±22.6 43.3±8.2 60.0±8.2 80.0±12.5 83.3±10.5 mammogra. 5.5±2.8 2.6±1.7 3.3±1.6 13.5±3.8 8.8±1.9 11.4±1.9 34.0±20.2 42.8±17.6 mist tabular 78.6±0.5 80.3±1.1 71.8±1.8 76.3±2.1 72.1±1.0 80.7±0.7 86.0±0.4 79.2±0.9 mukross 45.5±9.6 58.2±3.5 58.2±6.2 50.1±8.9 70.4±13.4 94.4±6.3 100.0±0.0 99.9±0.1 mukross 21.0±3.3 98.8±0.4 100.0±0.0 100.0±0.0 6.2±3.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 | ionosphere | 89.0 ± 1.5 | 91.0 ± 2.0 | 91.0 ± 1.7 | 91.3 ± 2.2 | | 85.9 ± 2.3 | 85.7 ± 2.8 | 88.6 ± 0.6 | | letter 36.4±3.6 44.4±3.1 25.4±10.0 45.6±10.6 43.0±2.5 51.2±3.7 54.4±5.6 47.2±4.9 19mpho 53.3±12.5 60.0±8.2 60.0±13.3 73.3±22.6 43.3±8.2 60.0±8.2 80.0±12.5 83.3±10.5 60.0±8.2 80.0±12.5 83.3±10.5 60.0±8.2 60.0±8.2 60.0±8.2 60.0±8.2 60.0±8.2 60.0±8.2 60.0±8.2 60.0±8.2 60.0±8.2 60.0±8.2 60.0±8.2 60.0±8.2 60.0±8.2 60.0±8.2 60.0±8.2 60.0±8.2 60.0±8.2 60.0±8.2 60.0±8.2 60.0±8.2 60.0±8.2 60.0±8.2 60.0±8.2 60.0±8.2 60.0±8.2 60.0±8.2 60.0±8.2 60.0±8.2 60.0±8.2 60.0±8.2 60.0±8.2 60.0±8.2 60.0±8.2 60.0±8.2 60.0±8.2 60.0±8.2 60.0±8.2 60.0±8.2 60.0±8.2 60.0±8.2 60.0±8.2 60.0±8.2 60.0±8.2 60.0±8.2 60.0±0.9 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0.0 60.0±0 | kdd | 95.9 ± 0.0 | 96.0 ± 1.1 | 98.1 ± 0.4 | 98.4 ± 0.1 | 99.3 ± 0.1 | 99.4 ± 0.1 | 99.5 ± 0.0 | 99.4 ± 0.0 | | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | kddrev | 98.4 ± 0.1 | | 89.1 ± 1.7 | 98.6 ± 0.0 | 97.9 ± 0.5 | 98.4 ± 0.4 | 98.8 ± 0.1 | 98.2 ± 0.4 | | mammogra. 5.5±2.8 2.6±1.7 3.3±1.6 13.5±3.8 8.8±1.9 11.4±1.9 34.0±20.2 42.8±17.6 mnist tabular 78.6±0.5 80.3±1.1 71.8±1.8 76.3±2.1 72.1±1.0 80.7±0.7 86.0±0.4 79.2±0.9 mulcross 45.5±9.6 58.2±3.5 58.2±6.2 50.1±8.9 70.4±13.4 94.4±6.3 100.0±0.0 99.9±0.1 musk 21.0±3.3 98.8±0.4 100.0±0.0 100.0±0.0 6.2±3.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 <t< td=""><td>letter</td><td>36.4 ± 3.6</td><td>44.4 ± 3.1</td><td>25.4 ± 10.0</td><td>45.6 ± 10.6</td><td></td><td>51.2 ± 3.7</td><td>54.4 ± 5.6</td><td>47.2 ± 4.9</td></t<> | letter | 36.4 ± 3.6 | 44.4 ± 3.1 | 25.4 ± 10.0 | 45.6 ± 10.6 | | 51.2 ± 3.7 | 54.4 ± 5.6 | 47.2 ± 4.9 | | mnist tabular mulcross 45.5±9.6 58.2±3.5 58.2±6.2 50.1±8.9 70.4±13.4 94.4±6.3 100.0±0.0 99.9±0.1 musk 21.0±3.3 98.8±0.4 100.0±0.0 100.0±0.0 6.2±3.0 100.0±0.0 100.0±0.0 100.0±0.0 optdigits 0.2±0.3 1.5±0.3 41.7±45.9 59.1±48.2 0.8±0.5 1.3±1.1 1.2±1.0 0.9±0.5 pendigits 5.0±2.5 32.6±10.0 79.4±4.7 81.9±4.3 10.3±4.6 30.1±8.5 80.3±6.1 88.6±2.2 pima 60.3±2.6 61.0±1.9 61.3±2.4 61.0±0.9 58.1±2.9 59.3±1.4 63.0±1.0 60.1±1.4 satellite 73.6±0.4 74.1±0.3 74.8±0.4 74.7±0.1 72.7±1.3 72.7±0.6 73.6±0.2 73.2±0.6 satimage 26.8±1.5 86.8±4.0 90.7±1.1 91.0±0.7 7.3±0.6 85.1±1.4 91.3±1.1 91.5±0.9 seismic 11.9±1.8 11.5±1.0 18.1±0.7 17.1±0.6 14.9±1.4 17.3±2.1 23.6±2.8 24.2±1.4 shuttle 97.0±0.3 97.0±0.2 97.1±0.2 97.0±0.2 96.6±0.2 96.7±0.1 96.9±0.1 97.0±0.2 speech 6.9±1.2 8.2±2.1 43.3±5.6 50.8±2.5 0.3±0.7 1.6±1.0 2.0±0.7 0.7±0.8 thyroid 43.4±5.5 55.1±4.2 82.4±2.7 82.4±2.3 45.8±7.3 71.6±2.4 83.2±2.9 80.9±2.5 vertebral 22.0±4.5 21.3±4.5 22.7±11.0 25.3±4.0 8.9±3.1 8.9±4.2 7.8±4.2 10.0±2.7 vowels 36.0±1.8 50.4±8.8 62.8±9.5 48.4±6.6 42.1±9.0 60.4±7.9 81.6±2.9 74.4±8.0 wbc 25.7±12.3 45.7±15.5 76.2±6.0 69.5±3.8 50.5±5.7 50.5±2.3 61.0±4.7 61.0±1.9 | lympho | 53.3±12.5 | 60.0 ± 8.2 | 60.0 ± 13.3 | 73.3 ± 22.6 | 43.3 ± 8.2 | 60.0 ± 8.2 | 80.0 ± 12.5 | 83.3 ± 10.5 | | mulcross 45.5 ± 9.6 58.2 ± 3.5 58.2 ± 6.2 50.1 ± 8.9 70.4 ± 13.4 94.4 ± 6.3 100.0 ± 0.0 99.9 ± 0.1 musk 21.0 ± 3.3 98.8 ± 0.4 100.0 ± 0.0 100.0 ± 0.0 6.2 ± 3.0 100.0 ± 0.0 | mammogra. | 5.5 ± 2.8 | 2.6 ± 1.7 | 3.3 ± 1.6 | 13.5 ± 3.8 | 8.8 ± 1.9 | 11.4 ± 1.9 | 34.0 ± 20.2 | 42.8 ± 17.6 | | musk 21.0 ± 3.3 98.8 ± 0.4 100.0 ± 0.0 100.0 ± 0.0 6.2 ± 3.0 100.0 ± 0.0 | mnist tabular | | | | | | | 86.0 ± 0.4 | | | optdigits 0.2 ± 0.3 1.5 ± 0.3 41.7 ± 45.9 59.1 ± 48.2 0.8 ± 0.5 1.3 ± 1.1 1.2 ± 1.0 0.9 ± 0.5 pendigits 5.0 ± 2.5 32.6 ± 10.0 79.4 ± 4.7 81.9 ± 4.3 10.3 ± 4.6 30.1 ± 8.5 80.3 ± 6.1 88.6 ± 2.2 pima 60.3 ± 2.6 61.0 ± 1.9 61.3 ± 2.4 61.0 ± 0.9 58.1 ± 2.9 59.3 ± 1.4 63.0 ± 1.0 60.1 ± 1.4 satellite 73.6 ± 0.4 74.1 ± 0.3 74.8 ± 0.4 74.7 ± 0.1 72.7 ± 1.3 72.7 ± 0.6 73.6 ± 0.2 73.2 ± 0.6 satimage 26.8 ± 1.5 86.8 ± 4.0 90.7 ± 1.1 91.0 ± 0.7 7.3 ± 0.6 85.1 ± 1.4 91.3 ± 1.1 91.5 ± 0.9 seismic 11.9 ± 1.8 11.5 ± 1.0 18.1 ± 0.7 17.1 ± 0.6 14.9 ± 1.4 17.3 ± 2.1 23.6 ± 2.8 24.2 ± 1.4 shuttle 97.0 ± 0.3 97.0 ± 0.2 97.1 ± 0.2 97.0 ± 0.2 96.0 ± 0.2 96.7 ± 0.1 96.9 ± 0.1 97.0 ± 0.2 speech 6.9 ± 1.2 8.2 ± 2.1 43.3 ± 5.6 50.8 ± 2.5 0.3 ± 0.7 <td>mulcross</td> <td>45.5±9.6</td> <td>58.2 ± 3.5</td> <td>58.2 ± 6.2</td> <td>50.1 ± 8.9</td> <td>70.4 ± 13.4</td> <td>94.4 ± 6.3</td> <td>100.0 ± 0.0</td> <td>99.9 ± 0.1</td> | mulcross | 45.5±9.6 | 58.2 ± 3.5 | 58.2 ± 6.2 | 50.1 ± 8.9 | 70.4 ± 13.4 | 94.4 ± 6.3 | 100.0 ± 0.0 | 99.9 ± 0.1 | | pendigits 5.0 ± 2.5 32.6 ± 10.0 79.4 ± 4.7 81.9 ± 4.3 10.3 ± 4.6 30.1 ± 8.5 80.3 ± 6.1 88.6 ± 2.2 pima 60.3 ± 2.6 61.0 ± 1.9 61.3 ± 2.4 61.0 ± 0.9 58.1 ± 2.9 59.3 ± 1.4 63.0 ± 1.0 60.1 ± 1.4 satellite 73.6 ± 0.4 74.1 ± 0.3 74.8 ± 0.4 74.7 ± 0.1 72.7 ± 1.3 72.7 ± 0.6 73.6 ± 0.2 73.2 ± 0.6 satimage 26.8 ± 1.5 86.8 ± 4.0 90.7 ± 1.1 91.0 ± 0.7 7.3 ± 0.6 85.1 ± 1.4 91.3 ± 1.1 91.5 ± 0.9 seismic 11.9 ± 1.8 11.5 ± 1.0 18.1 ± 0.7 17.1 ± 0.6 14.9 ± 1.4 17.3 ± 2.1 23.6 ± 2.8 24.2 ± 1.4 shuttle 97.0 ± 0.3 97.0 ± 0.2 97.0 ± 0.2 97.0 ± 0.2 96.0 ± 0.1 96.9 ± 0.1 97.0 ± 0.2 speech 6.9 ± 1.2 8.2 ± 2.1 43.3 ± 5.6 50.8 ± 2.5 0.3 ± 0.7 1.6 ± 1.0 2.0 ± 0.7 0.7 ± 0.8 thyroid 43.4 ± 5.5 55.1 ± 4.2 82.4 ± 2.7 82.4 ± 2.3 45.8 ± 7.3 71.6 ± 2.4 83.2 ± 2.9 80.9 ± 2.5 vertebral 22.0 ± 4.5 21.3 ± 4.5 22.7 ± 11.0 25.3 ± 4.0 8.9 ± 3.1 8.9 ± 4.2 7.8 ± 4.2 10.0 ± 2.7 vowels 36.0 ± 1.8 50.4 ± 8.8 62.8 ± 9.5 48.4 ± 6.6 42.1 ± 9.0 60.4 ± 7.9 81.6 ± 2.9 74.4 ± 8.0 wbc 25.7 ± 12.3 45.7 ± 15.5 76.2 ± 6.0 69.5 ± 3.8 50.5 ± 5.7 50.5 ± 2.3 61.0 ± 4.7 61.0 ± 1.9 | musk | 21.0 ± 3.3 | 98.8 ± 0.4 | 100.0 ± 0.0 | 100.0 ± 0.0 | 6.2 ± 3.0 | 100.0 ± 0.0 | 100.0 ± 0.0 | 100.0 ± 0.0 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | optdigits | 0.2 ± 0.3 | 1.5 ± 0.3 | 41.7 ± 45.9 | 59.1 ± 48.2 | 0.8 ± 0.5 | 1.3 ± 1.1 | 1.2 ± 1.0 | 0.9 ± 0.5 | | satellite 73.6 ± 0.4 74.1 ± 0.3 74.8 ± 0.4 74.7 ± 0.1 72.7 ± 1.3 72.7 ± 0.6 73.6 ± 0.2 73.2 ± 0.6 satimage 26.8 ± 1.5 86.8 ± 4.0 90.7 ± 1.1 91.0 ± 0.7 7.3 ± 0.6 85.1 ± 1.4 91.3 ± 1.1 91.5 ± 0.9 seismic 11.9 ± 1.8 11.5 ± 1.0 18.1 ± 0.7 17.1 ± 0.6 14.9 ± 1.4 17.3 ± 2.1 23.6 ± 2.8 24.2 ± 1.4 shuttle 97.0 ± 0.3 97.0 ± 0.2 97.0 ± 0.2 96.6 ± 0.2 96.7 ± 0.1 96.9 ± 0.1 97.0 ± 0.2 speech 6.9 ± 1.2 8.2 ± 2.1 43.3 ± 5.6 50.8 ± 2.5 0.3 ± 0.7 1.6 ± 1.0 2.0 ± 0.7 0.7 ± 0.8 thyroid 43.4 ± 5.5 55.1 ± 4.2 82.4 ± 2.7 82.4 ± 2.3 45.8 ± 7.3 71.6 ± 2.4 83.2 ± 2.9 80.9 ± 2.5 vertebral 22.0 ± 4.5 21.3 ± 4.5 22.7 ± 11.0 25.3 ± 4.0 8.9 ± 3.1 8.9 ± 4.2 7.8 ± 4.2 10.0 ± 2.7 vowels 36.0 ± 1.8 50.4 ± 8.8 62.8 ± 9.5 48.4 ± 6.6 42.1 ± 9.0 60.4 ± 7.9 81.6 ± 2.9 74.4 ± 8.0 wbc 25.7 ± 12.3 45.7 ± 15.5 76.2 ± 6.0 69.5 ± 3.8 50.5 ± 5.7 50.5 ± 2.3 61.0 ± 4.7 61.0 ± 1.9 | pendigits | 5.0 ± 2.5 | 32.6 ± 10.0 | 79.4 ± 4.7 | 81.9 ± 4.3 | 10.3 ± 4.6 | 30.1 ± 8.5 | 80.3 ± 6.1 | 88.6 ± 2.2 | | satimage 26.8 ± 1.5 86.8 ± 4.0 90.7 ± 1.1 91.0 ± 0.7 7.3 ± 0.6 85.1 ± 1.4 91.3 ± 1.1 91.5 ± 0.9 seismic 11.9 ± 1.8 11.5 ± 1.0 18.1 ± 0.7 17.1 ± 0.6 14.9 ± 1.4 17.3 ± 2.1 23.6 ± 2.8 24.2 ± 1.4 shuttle 97.0 ± 0.3 97.0 ± 0.2 97.0 ± 0.2 96.6 ± 0.2 96.7 ± 0.1 96.9 ± 0.1 97.0 ± 0.2 speech 6.9 ± 1.2 8.2 ± 2.1 43.3 ± 5.6 50.8 ± 2.5 0.3 ± 0.7 1.6 ± 1.0 2.0 ± 0.7 0.7 ± 0.8 thyroid 43.4 ± 5.5 55.1 ± 4.2 82.4 ± 2.7 82.4 ± 2.3 45.8 ± 7.3 71.6 ± 2.4 83.2 ± 2.9 80.9 ± 2.5 vertebral 22.0 ± 4.5 21.3 ± 4.5 22.7 ± 11.0 25.3 ± 4.0 8.9 ± 3.1 8.9 ± 4.2 7.8 ± 4.2 10.0 ± 2.7 vowels 36.0 ± 1.8 50.4 ± 8.8 62.8 ± 9.5 48.4 ± 6.6 42.1 ± 9.0 60.4 ± 7.9 81.6 ± 2.9 74.4 ± 8.0 wbc 25.7 ± 12.3 45.7 ± 15.5 76.2 ± 6.0 69.5 ± 3.8 50.5 ± 2.3 61.0 ± 4.7 | pima | | | | | | | 63.0 ± 1.0 | | | seismic 11.9 ± 1.8 11.5 ± 1.0 18.1 ± 0.7 17.1 ± 0.6 14.9 ± 1.4 17.3 ± 2.1 23.6 ± 2.8 24.2 ± 1.4 shuttle 97.0 ± 0.3 97.0 ± 0.2 97.0 ± 0.2 96.6 ± 0.2 96.7 ± 0.1 96.9 ± 0.1 97.0 ± 0.2 speech 6.9 ± 1.2 8.2 ± 2.1 43.3 ± 5.6 50.8 ± 2.5 0.3 ± 0.7 1.6 ± 1.0 2.0 ± 0.7 0.7 ± 0.8 thyroid 43.4 ± 5.5 55.1 ± 4.2 82.4 ± 2.7 82.4 ± 2.3 45.8 ± 7.3 71.6 ± 2.4 83.2 ± 2.9 80.9 ± 2.5 vertebral 22.0 ± 4.5 21.3 ± 4.5 22.7 ± 11.0 25.3 ± 4.0 8.9 ± 3.1 8.9 ± 4.2 7.8 ± 4.2 10.0 ± 2.7 vowels 36.0 ± 1.8 50.4 ± 8.8 62.8 ± 9.5 48.4 ± 6.6 42.1 ± 9.0 60.4 ± 7.9 81.6 ± 2.9 74.4 ± 8.0 wbc 25.7 ± 12.3 45.7 ± 15.5 76.2 ± 6.0 69.5 ± 3.8 50.5 ± 2.3 61.0 ± 4.7 61.0 ± 1.9 | satellite | | | | 74.7 ± 0.1 | | 72.7 ± 0.6 | | | | shuttle 97.0 ± 0.3 97.0 ± 0.2 97.1 ± 0.2 97.0 ± 0.2 96.0 ± 0.2 96.7 ± 0.1 96.9 ± 0.1 97.0 ± 0.2 speech 6.9 ± 1.2 8.2 ± 2.1 43.3 ± 5.6 50.8 ± 2.5 0.3 ± 0.7 1.6 ± 1.0 2.0 ± 0.7 0.7 ± 0.8 thyroid 43.4 ± 5.5 55.1 ± 4.2 82.4 ± 2.7 82.4 ± 2.3 45.8 ± 7.3 71.6 ± 2.4 83.2 ± 2.9 80.9 ± 2.5 vertebral 22.0 ± 4.5 21.3 ± 4.5 22.7 ± 11.0 25.3 ± 4.0 8.9 ± 3.1 8.9 ± 4.2 7.8 ± 4.2 10.0 ± 2.7 vowels 36.0 ± 1.8 50.4 ± 8.8 62.8 ± 9.5 48.4 ± 6.6 42.1 ± 9.0 60.4 ± 7.9 81.6 ± 2.9 74.4 ± 8.0 wbc 25.7 ± 12.3 45.7 ± 15.5 76.2 ± 6.0 69.5 ± 3.8 50.5 ± 5.7 50.5 ± 2.3 61.0 ± 4.7 61.0 ± 1.9 | satimage | 26.8 ± 1.5 | 86.8 ± 4.0 | | 91.0 ± 0.7 | 7.3 ± 0.6 | 85.1 ± 1.4 | 91.3 ± 1.1 | 91.5 ± 0.9 | | speech thyroid 6.9 ± 1.2 8.2 ± 2.1 43.3 ± 5.6 50.8 ± 2.5 0.3 ± 0.7 1.6 ± 1.0 2.0 ± 0.7 0.7 ± 0.8 thyroid 43.4 ± 5.5 55.1 ± 4.2 82.4 ± 2.7 82.4 ± 2.3 45.8 ± 7.3 71.6 ± 2.4 83.2 ± 2.9 80.9 ± 2.5 vertebral 22.0 ± 4.5 21.3 ± 4.5 22.7 ± 11.0 25.3 ± 4.0 8.9 ± 3.1 8.9 ± 4.2 7.8 ± 4.2 10.0 ± 2.7 vowels 36.0 ± 1.8 50.4 ± 8.8 62.8 ± 9.5 48.4 ± 6.6 42.1 ± 9.0 60.4 ± 7.9 81.6 ± 2.9 74.4 ± 8.0 wbc 25.7 ± 12.3 45.7 ± 15.5 76.2 ± 6.0 69.5 ± 3.8 50.5 ± 5.7 50.5 ± 2.3 61.0 ± 4.7 61.0 ± 1.9 | seismic | 11.9 ± 1.8 | 11.5 ± 1.0 | 18.1 ± 0.7 | | | 17.3 ± 2.1 | 23.6 ± 2.8 | 24.2 ± 1.4 | | thyroid 43.4 ± 5.5 55.1 ± 4.2 82.4 ± 2.7 82.4 ± 2.3 45.8 ± 7.3 71.6 ± 2.4 83.2 ± 2.9 80.9 ± 2.5 vertebral 22.0 ± 4.5 21.3 ± 4.5 22.7 ± 11.0 25.3 ± 4.0 8.9 ± 3.1 8.9 ± 4.2 7.8 ± 4.2 10.0 ± 2.7 vowels 36.0 ± 1.8 50.4 ± 8.8 62.8 ± 9.5 48.4 ± 6.6 42.1 ± 9.0 60.4 ± 7.9 81.6 ± 2.9 74.4 ± 8.0 wbc 25.7 ± 12.3 45.7 ± 15.5 76.2 ± 6.0 69.5 ± 3.8 50.5 ± 5.7 50.5 ± 2.3 61.0 ± 4.7 61.0 ± 1.9 | shuttle | 97.0 ± 0.3 | 97.0 ± 0.2 | 97.1 ± 0.2 | | 96.6 ± 0.2 | 96.7 ± 0.1 | 96.9 ± 0.1 | 97.0 ± 0.2 | | vertebral vowels wbc 22.0 ± 4.5 21.3 ± 4.5 22.7 ± 11.0 25.3 ± 4.0 8.9 ± 3.1 8.9 ± 4.2 7.8 ± 4.2 10.0 ± 2.7 48.0 ± 3.1 < | speech | | 8.2 ± 2.1 | 43.3 ± 5.6 | 50.8 ± 2.5 | 0.3 ± 0.7 | 1.6 ± 1.0 | 2.0 ± 0.7 | 0.7 ± 0.8 | | vowels 36.0 ± 1.8 50.4 ± 8.8 62.8 ± 9.5 48.4 ± 6.6 42.1 ± 9.0 60.4 ± 7.9 81.6 ± 2.9 74.4 ± 8.0 wbc 25.7 ± 12.3 45.7 ± 15.5 76.2 ± 6.0 69.5 ± 3.8 50.5 ± 5.7 50.5 ± 2.3 61.0 ± 4.7 61.0 ± 1.9 | thyroid | 43.4±5.5 | | 82.4 ± 2.7 | | 45.8 ± 7.3 | 71.6 ± 2.4 | 83.2 ± 2.9 | 80.9 ± 2.5 | | wbc 25.7 ± 12.3 45.7 ± 15.5 76.2 ± 6.0 69.5 ± 3.8 50.5 ± 5.7 50.5 ± 2.3 61.0 ± 4.7 61.0 ± 1.9 | vertebral | 22.0 ± 4.5 | 21.3 ± 4.5 | 22.7 ± 11.0 | 25.3 ± 4.0 | 8.9 ± 3.1 | 8.9 ± 4.2 | 7.8 ± 4.2 | 10.0 ± 2.7 | | | vowels | 36.0 ± 1.8 | 50.4 ± 8.8 | 62.8 ± 9.5 | 48.4 ± 6.6 | 42.1 ± 9.0 | 60.4 ± 7.9 | 81.6 ± 2.9 | 74.4 ± 8.0 | | wine $\begin{vmatrix} 24.0 + 18.5 & 66.0 + 12.0 & 90.0 + 0.0 & 92.0 + 4.0 & 4.0 + 4.9 & 10.0 + 8.9 & 98.0 + 4.0 & 100.0 + 0.0 \end{vmatrix}$ | wbc | 25.7 ± 12.3 | 45.7 ± 15.5 | 76.2 ± 6.0 | 69.5 ± 3.8 | 50.5±5.7 | 50.5 ± 2.3 | 61.0 ± 4.7 | 61.0 ± 1.9 | | | wine | 24.0±18.5 | 66.0 ± 12.0 | 90.0 ± 0.0 | 92.0 ± 4.0 | 4.0 ± 4.9 | 10.0 ± 8.9 | 98.0 ± 4.0 | 100.0 ± 0.0 | #### Experiment results on various contamination ratios ▶ LOE shows considerable robustness to different contamination ratios. #### Sensitivity study on the misspecified contamination ratio ► LOE shows considerable robustness against misspecified contamination ratios. # THANK YOU Paper Link Code Link Correspondence: Chen.Qiu@de.bosch.com