
Monarch: Expressive Structured Matrices 
for Efficient and Accurate Training

Tri Dao, Beidi Chen, Nimit Sohoni, Arjun Desai, Michael Poli
Jessica Grogan, Alexander Liu, Aniruddh Rao, Atri Rudra, Christopher Ré



Sparsity: A Natural Approach to Reduce Computation

Challenges with structured linear maps (low-rank, sparse, Fourier):



Sparsity: A Natural Approach to Reduce Computation

Sparse end-to-end training

Efficiency-quality tradeoffs: 
• Efficiency: on modern hardware (GPU)

• Quality: how expressive are the weight 
matrices (can they represent commonly used 
transforms)

Challenges with structured linear maps (low-rank, sparse, Fourier):



Sparsity: A Natural Approach to Reduce Computation

Sparse end-to-end training

• Projection: How to find a 
sparse/structured matrix closest to a 
pretrained dense weight matrix

Efficiency-quality tradeoffs: 
• Efficiency: on modern hardware (GPU)

• Quality: how expressive are the weight 
matrices (can they represent commonly used 
transforms)

Dense-to-sparse finetuning

Challenges with structured linear maps (low-rank, sparse, Fourier):



Sparsity: A Natural Approach to Reduce Computation

Sparse end-to-end training

• Projection: How to find a 
sparse/structured matrix closest to a 
pretrained dense weight matrix

Efficiency-quality tradeoffs: 
• Efficiency: on modern hardware (GPU)

• Quality: how expressive are the weight 
matrices (can they represent commonly used 
transforms)

Dense-to-sparse finetuning

Challenges with structured linear maps (low-rank, sparse, Fourier):

Monarch: one of the first sparse 
training methods to achieve 

wall-clock speedup while maintaining 
quality.



Outl ine

Part 1 Monarch matrices
Hardware-efficiency
Expressiveness
Tractable projection from dense weight matrices

Sparse end-to-end (E2E) training
Sparse-to-dense (S2D) training (reverse sparsification)

Language modeling, computer vision, PDEs & MRI

24

Part 2 Ways to use sparse models 

Part 3 Applications



Outl ine

Part 1 Monarch matrices
Hardware-efficiency
Expressiveness
Tractable projection from dense weight matrices

Sparse end-to-end (E2E) training
Sparse-to-dense (S2D) training (reverse sparsification)

Language modeling, computer vision, PDEs & MRI

25

Part 2 Three ways to use sparse models 

Part 3 Applications



Monarch Matrices: Efficient and Expressive



Monarch Matrices: Efficient and Expressive

Motivation: divide-and-conquer structure
(e.g., Cooley-Tukey FFT algorithm)



Monarch Matrices: Efficient and Expressive

(1) Hardware-efficient
(2) Expressive
(3) Tractable projection

Motivation: divide-and-conquer structure
(e.g., Cooley-Tukey FFT algorithm)



Monarch Matrices: Efficient and Expressive

(1) Hardware-efficient
(2) Expressive
(3) Tractable projection

Motivation: divide-and-conquer structure
(e.g., Cooley-Tukey FFT algorithm)

Focus of
this talk



Monarch Matrices: Efficient and Expressive

(1) Hardware-efficient
(2) Expressive
(3) Tractable projection

Motivation: divide-and-conquer structure
(e.g., Cooley-Tukey FFT algorithm)

Focus of
this talk

Nice and 
deep theory



Hardware-Efficiency

Butterfly 

Flat Butterfly 

+ + +

+ +

Flat Block Butterfly 

Block Butterfly 

++

+ ++

[Beneš, 65; Parker, 95; Matthieu & LeCun, 14; De Sa et al., 18, Dao et al., 19]



Hardware-Efficiency

Butterfly 

Flat Butterfly 

+ + +

+ +

Flat Block Butterfly 

Block Butterfly 

++

+ ++

[Beneš, 65; Parker, 95; Matthieu & LeCun, 14; De Sa et al., 18, Dao et al., 19]

Fast in theory (O(N log N) runtime & parameters
Expressive: Can represent any structure (e.g., sparsity) almost optimally



Hardware-Efficiency

Problem 1: Not block-aligned

Butterfly 

Flat Butterfly 

+ + +

+ +

Flat Block Butterfly 

Block Butterfly 

++

+ ++

[Beneš, 65; Parker, 95; Matthieu & LeCun, 14; De Sa et al., 18, Dao et al., 19]

Fast in theory (O(N log N) runtime & parameters
Expressive: Can represent any structure (e.g., sparsity) almost optimally



Hardware-Efficiency

Problem 1: Not block-aligned

Butterfly 

Flat Butterfly 

+ + +

+ +

Flat Block Butterfly 

Block Butterfly 

++

+ ++

Problem 2: Hard to parallelize the product of many factors 

[Beneš, 65; Parker, 95; Matthieu & LeCun, 14; De Sa et al., 18, Dao et al., 19]

Fast in theory (O(N log N) runtime & parameters
Expressive: Can represent any structure (e.g., sparsity) almost optimally



Hardware-Efficiency

Problem 1: Not block-aligned

Butterfly 

Flat Butterfly 

+ + +

+ +

Flat Block Butterfly 

Block Butterfly 

++

+ ++

Problem 2: Hard to parallelize the product of many factors 

[Beneš, 65; Parker, 95; Matthieu & LeCun, 14; De Sa et al., 18, Dao et al., 19]

Monarch

Fast in theory (O(N log N) runtime & parameters
Expressive: Can represent any structure (e.g., sparsity) almost optimally



Hardware-Efficiency

Problem 1: Not block-aligned

Butterfly 

Flat Butterfly 

+ + +

+ +

Flat Block Butterfly 

Block Butterfly 

++

+ ++

Problem 2: Hard to parallelize the product of many factors 

[Beneš, 65; Parker, 95; Matthieu & LeCun, 14; De Sa et al., 18, Dao et al., 19]

Monarch

3-5x faster on GPUs
Same expressivity

Fast in theory (O(N log N) runtime & parameters
Expressive: Can represent any structure (e.g., sparsity) almost optimally



Hardware-Efficiency

Problem 1: Not block-aligned

Butterfly 

Flat Butterfly 

+ + +

+ +

Flat Block Butterfly 

Block Butterfly 

++

+ ++

Problem 2: Hard to parallelize the product of many factors 

[Beneš, 65; Parker, 95; Matthieu & LeCun, 14; De Sa et al., 18, Dao et al., 19]

Monarch

Block-diagonal leverages efficient batch-matrix-multiply on GPUs

3-5x faster on GPUs
Same expressivity

Fast in theory (O(N log N) runtime & parameters
Expressive: Can represent any structure (e.g., sparsity) almost optimally



Expressiveness: Monarch Can Represent 
Many Structured Matrices



Expressiveness: Monarch Can Represent 
Many Structured Matrices

(Elementwise) sparsity & low-rank can’t represent most of these structures



Expressiveness: Monarch Can Represent 
Many Structured Matrices

(Elementwise) sparsity & low-rank can’t represent most of these structures

Monarch can represent & learn these structures



Outl ine

Part 1 Monarch matrices
Hardware-efficiency
Expressiveness
Tractable projection from dense weight matrices

Sparse end-to-end (E2E) training
Sparse-to-dense (S2D) training (reverse sparsification)

Language modeling, computer vision, PDEs & MRI

41

Part 2 Ways to use sparse models 

Part 3 Applications



Three Ways to Use Sparse Models



Sparse End-to-End Training

Replace dense weight matrices (e.g., attention & FFN) with Monarch matrices for efficiency



Sparse-to-Dense Training (reverse sparsification)



Outl ine

Part 1 Monarch matrices
Hardware-efficiency
Expressiveness
Tractable projection from dense weight matrices

Sparse end-to-end (E2E) training
Sparse-to-dense (S2D) training (reverse sparsification)

Language modeling, computer vision, PDEs & MRI

45

Part 2 Ways to use sparse models 

Part 3 Applications



Validation: Sparse End-to-End Training

Model WikiText
103(ppl)

Speedup

GPT-2 Small 20.6 -

Monarch GPT-2-small 20.7 1.8 x

Benchmark tasks



Validation: Sparse End-to-End Training

Model WikiText
103(ppl)

Speedup

GPT-2 Small 20.6 -

Monarch GPT-2-small 20.7 1.8 x

Benchmark tasks

Model ImageNet
(acc)

Speedup

ViT-Base 78.5 -

Monarch ViT-Base 78.7 2.0 x



Validation: Sparse End-to-End Training

Model WikiText
103(ppl)

Speedup

GPT-2 Small 20.6 -

Monarch GPT-2-small 20.7 1.8 x

Other applications: PDEs solving, MRI reconstruction

Benchmark tasks

Model ImageNet
(acc)

Speedup

ViT-Base 78.5 -

Monarch ViT-Base 78.7 2.0 x



Validation: Sparse End-to-End Training

Model WikiText
103(ppl)

Speedup

GPT-2 Small 20.6 -

Monarch GPT-2-small 20.7 1.8 x

Speeds up training without losing performance 🚀!

Other applications: PDEs solving, MRI reconstruction

Benchmark tasks

Model ImageNet
(acc)

Speedup

ViT-Base 78.5 -

Monarch ViT-Base 78.7 2.0 x



Validation: Sparse-to-Dense Training
BERT Implementation Training time (h) to the same 

MLM accuracy
HuggingFace 84.5

Megatron 52.5

Nvidia MLPerf 1.1 30.2

Monarch 23.8



Validation: Sparse-to-Dense Training
BERT Implementation Training time (h) to the same 

MLM accuracy
HuggingFace 84.5

Megatron 52.5

Nvidia MLPerf 1.1 30.2

Monarch 23.8

3.5x faster than HuggingFace, 23% faster than Nvidia’s MLPerf



Validation: Sparse-to-Dense Training
BERT Implementation Training time (h) to the same 

MLM accuracy
HuggingFace 84.5

Megatron 52.5

Nvidia MLPerf 1.1 30.2

Monarch 23.8

3.5x faster than HuggingFace, 23% faster than Nvidia’s MLPerf

Monarch + FlashAttention 21.5

Late breaking results: FlashAttention
Fast & mem-efficient exact attention

https://github.com/HazyResearch/flash-attention



Summary

53
Code: https://github.com/HazyResearch/monarch



Summary

54
Code: https://github.com/HazyResearch/monarch

Monarch: hardware-efficient, expressive matrices

Ways to use: sparse end-to-end training, sparse-to-dense 
training (reverse sparsification)

Upshot: wallclock-time speedup with sparse training, 
maintaining model quality



Summary

55
Code: https://github.com/HazyResearch/monarch

Monarch: hardware-efficient, expressive matrices

Ways to use: sparse end-to-end training, sparse-to-dense 
training (reverse sparsification)

Upshot: wallclock-time speedup with sparse training, 
maintaining model quality



Tractable Projection



Tractable Projection

For a given dense matrix A, find



Tractable Projection

For a given dense matrix A, find

Hard problem for most classes of matrices



Tractable Projection

Monarch: tractable projection algorithm, analogous to the SVD

For a given dense matrix A, find

Hard problem for most classes of matrices



Dense-to-sparse finetuning



Validation: dense-to-sparse finetuning

Model GLUE 
(avg)

Speedup

BERT-large 80.4 -

Monarch BERT-large 79.6 1.7x



Validation: dense-to-sparse finetuning

Model GLUE 
(avg)

Speedup

BERT-large 80.4 -

Monarch BERT-large 79.6 1.7x

Speed up finetuning by trading off some model quality.


