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Challenges with structured linear maps (low-rank, sparse, Fourier):

Sparse end-to-end training

Efficiency-quality tradeoffs:
« Efficiency: on modern hardware (GPU)

* Quality: how expressive are the weight Monarch: one of the first sparse

matrices (can they represent commonly used training methods to achieve

transforms)
wall-clock speedup while maintaining

Dense-to-sparse finetuning quality

* Projection: How to find a
sparse/structured matrix closest to a
pretrained dense weight matrix



Monarch matrices

Ways to use sparse models

Applications
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Monarch matrices

Hardware-efficiency
Expressiveness
Tractable projection from dense weight matrices
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Monarch Matrices: Efficient and Expressive
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Fast in theory (O(N log N) runtime & parameters 3-5x faster on GPUs
Expressive: Can represent any structure (e.g., sparsity) almost optimally Same expressivity

Problem 1: Not block-aligned
Problem 2: Hard to parallelize the product of many factors

Block-diagonal leverages efficient batch-matrix-multiply on GPUs

[Benes, 65; Parker, 95; Matthieu & LeCun, 14; De Sa et al., 18, Dao et al., 19]
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Many Structured Matrices
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(Elementwise) sparsity & low-rank can’t represent most of these structures

Monarch can represent & learn these structures



Ways to use sparse models

Sparse end-to-end (E2E) training
Sparse-to-dense (S2D) training (reverse sparsification)
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Three Ways to Use Sparse Models
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Sparse End-to-End Training
(@ Sparse E2E Training
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Replace dense weight matrices (e.g., attention & FFN) with Monarch matrices for efficiency



Sparse-to-Dense Training (reverse sparsification)
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Applications

Language modeling, computer vision, PDEs & MRI
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Validation: Sparse End-to-End Training
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Other applications: PDEs solving, MRI reconstruction

Speeds up training without losing performance t 4
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Validation: Sparse-to-Dense Training

@) Reverse Sparsification

BERT Implementation Training time (h) to the same / , \

MLM accuracy

HuggingFace 84.5 n E 2xfaster
i o | same quality

Megatron 92.5 U

Nvidia MLPerf 1.1 30.2
Monarch 23.8 C ; g
Monarch + FlashAttention 21.5 \\ t (gpuhouy

Late breaking results: FlashAttention
Fast & mem-efficient exact attention

https://github.com/HazyResearch/flash-attention

3.5x faster than HuggingFace, 23% faster than Nvidia's MLPerf



Code: https://github.com/HazyResearch/monarch
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Monarch: hardware-efficient, expressive matrices

Ways to use: sparse end-to-end training, sparse-to-dense
training (reverse sparsification)

Upshot: wallclock-time speedup with sparse training,
maintaining model quality

Code: https://github.com/HazyResearch/monarch
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Ways to use: sparse end-to-end training, sparse-to-dense
training (reverse sparsification)

Upshot: wallclock-time speedup with sparse training,
maintaining model quality

Code: https://github.com/HazyResearch/monarch

55



Tractable Projection

Dense REALSE
[ I

Monarch matrices



Tractable Projection

Dense Sparse

Monarch matrices

For a given dense matrix A, find argminHA—MH%
MeM



Tractable Projection

Dense Sparse

v

Monarch matrices

For a given dense matrix A, find argminHA—MH%
MeM

Hard problem for most classes of matrices



Tractable Projection

Dense Sparse

v

Monarch matrices

For a given dense matrix A, find argminHA—MH%
MeM

Hard problem for most classes of matrices

Monarch: tractable projection algorithm, analogous to the SVD



Dense-to-sparse finetuning
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Validation: dense-to-sparse finetuning

Model GLUE  Speedup
c\e)
BERT-large 80.4
Monarch BERT-large 79.6 1.7x

Speed up finetuning by trading off some model quality.



