On the Sample Complexity of Learning Infinite-horizon Discounted Linear Kernel MDPs

Yuanzhou Chen 1

Jiafan He ¹

Quanquan Gu 1

¹Department of Computer Science, UCLA

July 17, 2022

Reinforcement Learning on Discounted MDPs

Discounted Markov Decision Processes (MDP),

$$M(\underbrace{s \in \mathcal{S}}_{\text{state space action space discount factor reward function transition dynamic}}, \underbrace{r(s, a)}_{\text{state space action space discount factor reward function transition dynamic}}, \underbrace{P(s'|s, a)}_{\text{state space action space}}$$

Starting from s_1 , at round t,

- ▶ Select action $a_t \leftarrow \pi_t(s_t)$
- ▶ Observe reward $r(s_t, a_t)$ and next-state s_{t+1}

Reinforcement Learning on Discounted MDPs

Discounted Markov Decision Processes (MDP),

$$M(\underbrace{s \in \mathcal{S}}_{\text{state space action space discount factor reward function transition dynamic}}, \underbrace{r(s, a)}_{\text{state space action space discount factor reward function transition dynamic}}, \underbrace{P(s'|s, a)}_{\text{state space action space}}$$

Starting from s_1 , at round t,

- ▶ Select action $a_t \leftarrow \pi_t(s_t)$
- ▶ Observe reward $r(s_t, a_t)$ and next-state s_{t+1}

Goal: to find (non-stationary) policy $\pi=(\pi_t)_t$ to maximize the value function $V_t^\pi(s_t)$, where $a_i\sim\pi_i(s_i)$,

$$V_t^{\pi}(s_t) = Q_t^{\pi}(s_t, \pi_t(s_t)), \ Q_t^{\pi}(s, a) = \mathbb{E}\left[\sum_{i=0}^{\infty} \gamma^i r(s_{t+i}, a_{t+i}) \middle| s_t = s, a_t = a\right]$$

RL with Linear Function Approximation

- ► Tradition tabular reinforcement algorithms
 - lacktriangle Value function Q(s,a) can be represented as a table
- lacktriangle Limitation: Inefficient when $|\mathcal{S}|$ or $|\mathcal{A}|$ is large (e.g. $|\mathcal{S}| = \Omega(2^{100})$)

RL with Linear Function Approximation

- ► Tradition tabular reinforcement algorithms
 - lacktriangle Value function Q(s,a) can be represented as a table
- Limitation: Inefficient when $|\mathcal{S}|$ or $|\mathcal{A}|$ is large (e.g. $|\mathcal{S}| = \Omega(2^{100})$)
- ► Solution: Use linear function to approximate the underlining discounted MDPs

Definition (Linear Kernel MDPs Zhou et al. 2021; Ayoub et al. 2020)

MDP \mathcal{M} is linear kernel MDP if there exists a *known* feature mapping $\phi(\cdot|\cdot,\cdot): \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R}^d$ and an *unknown* vector $\boldsymbol{\theta} \in \mathbb{R}^d$, such that

$$\mathbb{P}(s'|s,a) = \langle \boldsymbol{\phi}(s'|s,a), \boldsymbol{\theta}^* \rangle, \boldsymbol{\phi}(s'|s,a) : \mathcal{S} \times \mathcal{A} \times \mathcal{S} \to \mathbb{R}^d$$

PAC-bound Guarantee for discounted MDPs

Definition ((ϵ, δ) -PAC-bounds)

For an RL algorithm \mathbf{Alg} and a fixed ϵ , let $\pi_t(t \in \mathbb{N})$ be the policies generated by \mathbf{alg} at round t. Let $N_\epsilon = \sum_{t=1}^\infty \mathbb{1}\{V_t^*(s_t) - V_t^{\pi_t}(s_t) > \epsilon\}$ be the number of rounds whose suboptimality gap is greater than ϵ . Then we say \mathbf{alg} is (ϵ, δ) -PAC with sample complexity $f(\epsilon, \delta)$ if

$$\mathbb{P}(N_{\epsilon} > f(\epsilon, \delta)) \le \delta.$$

- Widely used performance measure for tabular discounted MDPs
- ▶ Only have regret guarantee for discounted MDPs with linear function approximation

PAC-bound Guarantee for discounted MDPs

Definition ((ϵ, δ) -PAC-bounds)

For an RL algorithm \mathbf{Alg} and a fixed ϵ , let $\pi_t(t \in \mathbb{N})$ be the policies generated by \mathbf{alg} at round t. Let $N_\epsilon = \sum_{t=1}^\infty \mathbb{1}\{V_t^*(s_t) - V_t^{\pi_t}(s_t) > \epsilon\}$ be the number of rounds whose suboptimality gap is greater than ϵ . Then we say \mathbf{alg} is (ϵ, δ) -PAC with sample complexity $f(\epsilon, \delta)$ if

$$\mathbb{P}(N_{\epsilon} > f(\epsilon, \delta)) \le \delta.$$

- Widely used performance measure for tabular discounted MDPs
- Only have regret guarantee for discounted MDPs with linear function approximation

Efficient algorithms for discounted MDPs with linear function approximation to provide sample complexity guarantee?

UPAC-UCLK Algorithm

Uniform-PAC UCLK algorithm needs ...

Multi-level partition scheme

Confidence sets of $heta^*$

UPAC-UCLK Algorithm

Uniform-PAC UCLK algorithm needs ...

Multi-level partition scheme

Confidence sets of θ^*

In round t, UPAC-UCLK maintains confidence sets $\{\mathcal{C}_l\}_{l=1}^L \ni \boldsymbol{\theta}^*$ and ...

- ▶ Run Multi-level extended value iteration (ML-EVI) over $\{C_l\}_{l=1}^L$, set optimistic estimations $\{Q_l\}_{l=1}^L \leftarrow \mathsf{ML-EVI}(\{C_l\}_{l=1}^L)$
- ▶ Select action $a_t \leftarrow \operatorname{argmax}_a \min_{1 \leq l} Q_l(s_t, a)$, observe reward and next-state s_{t+1}
- Find the minimum level l_t that $\|\phi_{V_t}(s_t, a_t)\|_{(\mathbf{\Sigma}^{l_t})^{-1}} \ge 2^{-l_t} \sqrt{d}/(1-\gamma)$ update the covaraince matrix for level $l \ge l_t$ with discounted Data Inheritance.

$$\Sigma^l \leftarrow \Sigma^l + 2^{l_t - l} \phi_{V_t}(s_t, a_t) \phi_{V_t}(s_t, a_t)^{\top}.$$

▶ Update the confidence sets $\{C_l\}_{l=1}^L \ni \theta^*$ with updated covariance matrix.

Our Results for Linear Kernel MDPs

Theorem (Regret upper bound for linear kernel MDPs)

With high probability, the number of rounds in Algorithm UPAC-UCLK which have sub-optimality no less than ϵ is bounded by

$$\Gamma(1/\epsilon, \log(1/\delta); \gamma, d) = \widetilde{O}\left(\frac{1}{(1-\gamma)^6 \epsilon^2} + \frac{d^2 + d\log(1/\delta)}{(1-\gamma)^4 \epsilon^2}\right),$$

where d is the dimension of feature mapping and γ is the discount factor.

Our Results for Linear Kernel MDPs

Theorem (Regret upper bound for linear kernel MDPs)

With high probability, the number of rounds in Algorithm UPAC-UCLK which have sub-optimality no less than ϵ is bounded by

$$\Gamma(1/\epsilon, \log(1/\delta); \gamma, d) = \widetilde{O}\left(\frac{1}{(1-\gamma)^6 \epsilon^2} + \frac{d^2 + d\log(1/\delta)}{(1-\gamma)^4 \epsilon^2}\right),$$

where d is the dimension of feature mapping and γ is the discount factor.

- ► First sample complexity guarantee for discounted MDPs with linear function approximation
- Can further provide uniform-PAC guarantee for discounted MDPs
 - Strictly stronger than PAC-bound and regert
 - Guarantees the convergence to the optimal policy

Thank you!

Reference I

- Ayoub, Alex et al. (2020). "Model-Based Reinforcement Learning with Value-Targeted Regression". In: arXiv preprint arXiv:2006.01107.
- Zhou, Dongruo, Jiafan He, and Quanquan Gu (2021). "Provably Efficient Reinforcement Learning for Discounted MDPs with Feature Mapping". In: *International Conference on Machine Learning*. PMLR.