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Reinforcement Learning on Discounted MDPs

Discounted Markov Decision Processes (MDP),

M( s ∈ S︸ ︷︷ ︸
state space

, a ∈ A︸ ︷︷ ︸
action space

, γ︸︷︷︸
discount factor

, r(s, a)︸ ︷︷ ︸
reward function

, P(s′|s, a)︸ ︷︷ ︸
transition dynamic

)

Starting from s1, at round t,

▶ Select action at ← πt(st)

▶ Observe reward r(st, at) and next-state st+1
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Reinforcement Learning on Discounted MDPs

Discounted Markov Decision Processes (MDP),

M( s ∈ S︸ ︷︷ ︸
state space

, a ∈ A︸ ︷︷ ︸
action space

, γ︸︷︷︸
discount factor

, r(s, a)︸ ︷︷ ︸
reward function

, P(s′|s, a)︸ ︷︷ ︸
transition dynamic

)

Starting from s1, at round t,

▶ Select action at ← πt(st)

▶ Observe reward r(st, at) and next-state st+1

Goal: to find (non-stationary) policy π = (πt)t to maximize the value function V π
t (st),

where ai ∼ πi(si),

V π
t (st) = Qπ

t (st, πt(st)), Qπ
t (s, a) = E

[ ∞∑
i=0

γir(st+i, at+i)

∣∣∣∣st = s, at = a

]
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RL with Linear Function Approximation

▶ Tradition tabular reinforcement algorithms
▶ Value function Q(s, a) can be represented as a table

▶ Limitation: Inefficient when |S| or |A| is large ( e.g. |S| = Ω(2100))
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RL with Linear Function Approximation

▶ Tradition tabular reinforcement algorithms
▶ Value function Q(s, a) can be represented as a table

▶ Limitation: Inefficient when |S| or |A| is large ( e.g. |S| = Ω(2100))

▶ Solution: Use linear function to approximate the underlining discounted MDPs

Definition (Linear Kernel MDPs Zhou et al. 2021; Ayoub et al. 2020)

MDPM is linear kernel MDP if there exists a known feature mapping
ϕ(·|·, ·) : S ×A× S → Rd and an unknown vector θ ∈ Rd, such that

P(s′|s, a) = ⟨ϕ(s′|s, a),θ∗⟩,ϕ(s′|s, a) : S ×A× S → Rd
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PAC-bound Guarantee for discounted MDPs

Definition ((ϵ, δ)-PAC-bounds)

For an RL algorithm Alg and a fixed ϵ, let πt(t ∈ N) be the policies generated by alg at
round t. Let Nϵ =

∑∞
t=1 1{V ∗

t (st)− V πt
t (st) > ϵ} be the number of rounds whose

suboptimality gap is greater than ϵ. Then we say alg is (ϵ, δ)-PAC with sample complexity
f(ϵ, δ) if

P(Nϵ > f(ϵ, δ)) ≤ δ.

▶ Widely used performance measure for tabular discounted MDPs

▶ Only have regret guarantee for discounted MDPs with linear function approximation

6 / 13



PAC-bound Guarantee for discounted MDPs

Definition ((ϵ, δ)-PAC-bounds)

For an RL algorithm Alg and a fixed ϵ, let πt(t ∈ N) be the policies generated by alg at
round t. Let Nϵ =

∑∞
t=1 1{V ∗

t (st)− V πt
t (st) > ϵ} be the number of rounds whose

suboptimality gap is greater than ϵ. Then we say alg is (ϵ, δ)-PAC with sample complexity
f(ϵ, δ) if

P(Nϵ > f(ϵ, δ)) ≤ δ.

▶ Widely used performance measure for tabular discounted MDPs

▶ Only have regret guarantee for discounted MDPs with linear function approximation

Efficient algorithms for discounted MDPs with linear function approximation to
provide sample complexity guarantee?
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UPAC-UCLK Algorithm

Uniform-PAC UCLK algorithm needs ...

Multi-level partition scheme Confidence sets of θ∗
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UPAC-UCLK Algorithm

Uniform-PAC UCLK algorithm needs ...

Multi-level partition scheme Confidence sets of θ∗

In round t, UPAC-UCLK maintains confidence sets {Cl}Ll=1 ∋ θ∗ and ...

▶ Run Multi-level extended value iteration (ML-EVI) over {Cl}Ll=1, set optimistic
estimations {Ql}Ll=1 ← ML-EVI({Cl}Ll=1)

▶ Select action at ← argmaxamin1≤l Ql(st, a), observe reward and next-state st+1

▶ Find the minimum level lt that ∥ϕVt(st, at)∥(Σlt )−1 ≥ 2−lt
√
d/(1− γ) update the

covaraince matrix for level l ≥ lt with discounted Data Inheritance .

Σl ← Σl + 2lt−lϕVt(st, at)ϕVt(st, at)
⊤.

▶ Update the confidence sets {Cl}Ll=1 ∋ θ∗ with updated covariance matrix.
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Our Results for Linear Kernel MDPs

Theorem (Regret upper bound for linear kernel MDPs)

With high probability, the number of rounds in Algorithm UPAC-UCLK which have
sub-optimality no less than ϵ is bounded by

Γ
(
1/ϵ, log(1/δ); γ, d

)
= Õ

(
1

(1− γ)6ϵ2
+

d2 + d log(1/δ)

(1− γ)4ϵ2

)
,

where d is the dimension of feature mapping and γ is the discount factor.
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Our Results for Linear Kernel MDPs

Theorem (Regret upper bound for linear kernel MDPs)

With high probability, the number of rounds in Algorithm UPAC-UCLK which have
sub-optimality no less than ϵ is bounded by

Γ
(
1/ϵ, log(1/δ); γ, d

)
= Õ

(
1

(1− γ)6ϵ2
+

d2 + d log(1/δ)

(1− γ)4ϵ2

)
,

where d is the dimension of feature mapping and γ is the discount factor.

▶ First sample complexity guarantee for discounted MDPs with linear function
approximation

▶ Can further provide uniform-PAC guarantee for discounted MDPs
▶ Strictly stronger than PAC-bound and regert
▶ Guarantees the convergence to the optimal policy
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Thank you!
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