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Coreset Selection

• Though superior performances have been achieved via learning from huge amounts of data, the data-
driven paradigm also poses several new challenges: 

• 1) the cumbersome dataset becomes harder to store and transfer;

• 2) for some real applications, such as continual learning, one can only access a small number of 
training data at each stage of training; 

• 3) in some more extreme scenarios, where the training data is incorrectly labelled, or they are 
collected from different domains, more training data may even hurt the model's performance. 

Therefore, how to select a small subset (i.e coreset ) comprised of most informative training samples, 
such that training on this subset can achieve comparable or even better performance with that on 
the full dataset becomes interesting.



Limitations of Previous works

• Traditional methods usually formulate the problem using uniform function approximation, which aims 
to find the subset from the entire set satisfying:

• Where the first term on the left is the loss calculated over the entire dataset, and the second term 
is the loss calculated over the selected subset.

• These methods cannot be applied to  DNNs directly. The reason is that as DNNs are always 
highly nonconvex and the hypothesis set is significantly larger than traditional models, to obtain 
small uniform approximation error, one has to select a very large coreset.

• Recently, a more reasonable formulation based on bilevel optimization has been proposed:

In this formulation, we only take into account the performance of the model trained on the coreset, i.e., 
the optimum , instead of achieving small approximation error for the loss function  in the whole 
parameter space.



Probabilistic Bilevel Coreset Selection

• Our formulation for coreset selection:

• Our formulation enjoys the following properties:

• Our constraint C induces sparsity on the probability score, making most components of the optimal 
s either 0 or 1. That is, our finally learned stochastic mask is  nearly deterministic

• Due to our sparsity constraint, the selected coreset size of the inner loop is always small, which 
makes the optimization of model parameters very efficient.

• Our outer objective is differentiable, allowing us to use general gradient based methods for 
optimization.

• Our algorithm gradually improves the quality of the selected subset by explores the training set 
globally. Unlike greedy methods which make decisions at early stage and cannot remove redundant 
data once added to the coreset.



Optimization

• We use Policy Gradient Estimator (PGE), which calculates the gradient using forward instead of 
backward propagation. Our key idea can be illustrated by the following equations:

• With PGE, we need only the loss value to calculate the gradient, which prevents deriving the second 
order term for implicit gradient. Thus greatly boosts the efficiency.
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