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Main Contributions

In this study, we have
e devised a fully-connected network S[v] on noncompact symmetric spaces X = G/K,
which covers Hyperbolic NNs and SPD Nets as special cases;

® derived the ridgelet transform R|[f; p|, a closed-form analysis operator satisfying the reconstruction
formula S[R[f; p]] = (o, p)) f, based on the Helgason-Fourier transform on G/K, and

® presented a constructive proof of the cc-universality of finite networks on G/K by discretizing the
reconstruction formula in a coordinate-free and unified manner
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A Noncompact Symmetric Space G/K

® is a homogeneous space G/K with nonpositive sectional curvature on which G acts transitively

Definition (Noncompact Symmetric Space G/K)
® Let GG be a connected semisimple real Lie group, and
® let G = KAN be the lwasawa decomposition.
® The quotient (the set of all left cosets)

X :=G/K ={gK | ge G},

is called a noncompact symmetric space.

Example (Hyperbolic Space H™)

for embedding words, and tree-structured dataset

A\

Example (SPD Manifold P,,,)

or a manifold of postive definite matrices, e.g., covariance matrices

Figure: The Poincaré Disk B2 is a
2-dim. Hyperbolic space
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Neural Networks on G/K

® are developing, but lack expressive power analysis

e Difficulty: There are no canonical ways to define an “affine map a - @ — b on manifold”

(Reference) Euclidean NN

For any nonlinear function o : R — R, parameters (a;, b;,¢;) € R™ x R x R, a Euclidean NN (a depth-2

fully-connected neural network on R™) is given by

f(z) = i cio(a;-x—1b;), xeR™
i=1

Hyperbolic NNs (Ganea+18, Gulcehre+19,
Shimizu+21)

® For each point xz € H™,

® the affine map is re-defined by Gyrovector calculus,

® the elementwise activation is defined on a tangent
space: expg o o o log,(x)

SPDNets (Huang-Gooll7,
Dong+17, Gao+19)
® For an SPD matrix =z € P,,,
® BiMap layer: w'zw
* ReEig layer: u" max(0, A — b)u
where z = uT \u
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Geometric Reformulation of Euclidean Fully-Connected Neuron o(a -« —b)

As a “wavelet function on the signed distance between a point
x and a hyperplane £":

ola-x—0b)=o(rd(z,£)), (geometric, or coordinate-free)

where

® a = ru (polar coordinates (r,u) € R x S™~1)

¢ :={yeR™|ru-y = b} (a hyperplane passing through
point (b/r)u with normal )

d(x, &) signed distance from point « to hyperplane £

d — o(rd) wavelet function
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Main Results 1/3: A Continuous Neural Network on G/K
Definition (Continuous Horospherical X-NN)

S[](z) := J v(a,u,b)o(a - (x,u) — b)e®Tdadudb, z e X
a* x0X xR

® j.e., a continuous frame defined by weighted fully-connected neurons x +— o(---)
® a=a* =R" for r := rank X (Lie algebra and its dual of A of G = KAN)
® o€ a* constant vector

a-valued composite distance {z,u)

is a vector distance from the origin o to a horosphere &(x, u)
(i.e., [{z,u)| becomes the Riemannian distance)

horosphere £(z, u) passing through point z € X
normal u € 0X

is a sphere in G/K with infinite radius (Recall that a Euclidean
hyperplane is a Euclidean sphere with infinite radius)

v
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Main Results 2/3: Ridgelet Transform
® is an analysis operator (or a pseudo-inverse operator) of integral representation operator S
Definition (Ridgelet Transform)
For any function f : G/K — C and an auxiliary function p: R — R,
Rf)(au8) = [ elf)(e)plaGovw — Bjerda
X

where ¢[f] is a Helgason-Fourier multiplier.

Theorem (Reconstruction Formula)
For any f € L*(X) (or f € C*(X)), 0 € S'(R),p e S(R),

where (o, p)) is a scalar product.

® i.e., a constructive universal approximation theorem for continuous neural networks on G/K
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Main Results 3/3: cc-Universality

® is a constructive universal approximation theorem for finite neural networks on G/K

Theorem (cc-Universality of X-NNs)

For any € > 0, compact set Z c X, functions f € C(Z),0 € §'(R), p € S(R), there exists a finite
neural network of the form

f(z) = Z cio(a; - (&, u;) — b)e?®u ze X = G/K

=1

satisfying
sup | f (@) — (z)| <.

xeZ

® j.e., the density of finite NNs in continuous functions w.r.t. the compact convergence
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Examples: Horospherical HNN and SPD Net
Continuous Horospherical Hyperbolic NN

On the Poincaré ball model B™ := {x € R™ | |x| < 1} equipped with the Riemannian metric
g =4(1—|o))72 XL, do; @ da,

S[yl(z) := J v(a, u,b)o(alx, u) — b)e®®Wdadudb, xeB™
Rx0B™ xR

1— 2
o= (m—1)/2, {z,u)y =log (ﬁ) ,  (x,u)eB™ x dB™
E

Continuous Horospherical SPD Net

S[yl(x) := J v(a,u,b)o(a - {x,u) — b)e@®dadudb, xecP,
R™ X 0P, xR

o= (% ,-3 2 (z,uy = log)\ (uzu'), (z,u) € Py, x 0P, where X is the diagonal in the
Cholesky decomposzt/on

v
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Sketch Proof of Reconstruction Formula

is based on Helgason-Fourier analysis on G/K
Given a function f : G/K — C, solve an integral equation S[y] = f of unknown #~.
Step 1: Turn S[v] to a Helgason-Fourier expression:

S[yl(x) := f v(a,u,b)o(a - (z,u) — b)e® ™ dadudb
a* x0X xR

#t 2 (iA+o){z,u) r f
Y )\ w,u,w)|c )\ (& ; :| w o"\W dw
[L*xax ( / )| ( )| |C()‘)|2 | | ( )

Step 2: Since inside [-- -] is the inverse Helgason-Fourier transform, put a separation-of-variables
form:

1
_27TR

¥, Ve, w,w) = FO,w)pf (w)]e(N)] 2.
Then, by the construction, it is a particular solution:
S[’nyﬁ] = ((Ja p))fa

where (0, p)) := "5 § 0% (w) () | " dw.
In the end, we employ Y¢,p as the definition of R[f; p]
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