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Main Contributions

In this study, we have

‚ devised a fully-connected network Srγs on noncompact symmetric spaces X “ G{K,

which covers Hyperbolic NNs and SPD Nets as special cases;

‚ derived the ridgelet transform Rrf ; ρs, a closed-form analysis operator satisfying the reconstruction
formula SrRrf ; ρss “ ppσ, ρqqf , based on the Helgason-Fourier transform on G{K, and

‚ presented a constructive proof of the cc-universality of finite networks on G{K by discretizing the
reconstruction formula in a coordinate-free and unified manner
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A Noncompact Symmetric Space G{K
‚ is a homogeneous space G{K with nonpositive sectional curvature on which G acts transitively

Definition (Noncompact Symmetric Space G{K)

‚ Let G be a connected semisimple real Lie group, and

‚ let G “ KAN be the Iwasawa decomposition.

‚ The quotient (the set of all left cosets)

X :“ G{K “ tgK | g P Gu,

is called a noncompact symmetric space.

Example (Hyperbolic Space Hm)

for embedding words, and tree-structured dataset

Example (SPD Manifold Pm)

or a manifold of postive definite matrices, e.g., covariance matrices
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Figure: The Poincaré Disk B2 is a
2-dim. Hyperbolic space
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Neural Networks on G{K
‚ are developing, but lack expressive power analysis
‚ Difficulty: There are no canonical ways to define an “affine map a ¨ x ´ b on manifold”

(Reference) Euclidean NN

For any nonlinear function σ : R Ñ R, parameters pai, bi, ciq P Rm ˆ R ˆ R, a Euclidean NN (a depth-2
fully-connected neural network on Rm) is given by

fpxq “

p
ÿ

i“1

ciσpai ¨ x ´ biq, x P Rm

Hyperbolic NNs (Ganea+18, Gulcehre+19,
Shimizu+21)

‚ For each point x P Hm,

‚ the affine map is re-defined by Gyrovector calculus,

‚ the elementwise activation is defined on a tangent
space: exp0 ˝ σ ˝ log0pxq

SPDNets (Huang-Gool17,
Dong+17, Gao+19)

‚ For an SPD matrix x P Pm,

‚ BiMap layer: wJxw

‚ ReEig layer: uJ maxp0, λ ´ bqu
where x “ uJλu
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Geometric Reformulation of Euclidean Fully-Connected Neuron σpa ¨x´ bq

As a “wavelet function on the signed distance between a point
x and a hyperplane ξ”:

σpa ¨ x ´ bq “ σprdpx, ξqq, (geometric, or coordinate-free)

where

‚ a “ ru (polar coordinates pr,uq P R ˆ Sm´1)

‚ ξ :“ ty P Rm | ru ¨ y “ bu (a hyperplane passing through
point pb{rqu with normal u)

‚ dpx, ξq signed distance from point x to hyperplane ξ

‚ d ÞÑ σprdq wavelet function
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Main Results 1/3: A Continuous Neural Network on G{K

Definition (Continuous Horospherical X-NN)

Srγspxq :“

ż

a˚ˆBXˆR
γpa, u, bqσpa ¨ xx, uy ´ bqeϱxx,uydadudb, x P X

‚ i.e., a continuous frame defined by weighted fully-connected neurons x ÞÑ σp¨ ¨ ¨ q

‚ a “ a˚ “ Rr for r :“ rankX (Lie algebra and its dual of A of G “ KAN)

‚ ϱ P a˚ constant vector

a-valued composite distance xx, uy

is a vector distance from the origin o to a horosphere ξpx, uq

(i.e., |xx, uy| becomes the Riemannian distance)

horosphere ξpx, uq passing through point x P X
normal u P BX

is a sphere in G{K with infinite radius (Recall that a Euclidean
hyperplane is a Euclidean sphere with infinite radius)
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Main Results 2/3: Ridgelet Transform
‚ is an analysis operator (or a pseudo-inverse operator) of integral representation operator S

Definition (Ridgelet Transform)

For any function f : G{K Ñ C and an auxiliary function ρ : R Ñ R,

Rrf spa, u, bq :“

ż

X

crf spxqρpa ¨ xx, uy ´ bqeϱxx,uydx

where crf s is a Helgason-Fourier multiplier.

Theorem (Reconstruction Formula)

For any f P L2pXq (or f P C8
c pXq), σ P S 1pRq, ρ P SpRq,

SrRrf ; ρss “ ppσ, ρqqf.

where ppσ, ρqq is a scalar product.

‚ i.e., a constructive universal approximation theorem for continuous neural networks on G{K
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Main Results 3/3: cc-Universality

‚ is a constructive universal approximation theorem for finite neural networks on G{K

Theorem (cc-Universality of X-NNs)

For any ε ą 0, compact set Z Ă X, functions f P CpZq, σ P S 1pRq, ρ P SpRq, there exists a finite
neural network of the form

fpxq :“
n

ÿ

i“1

ciσpai ¨ xx, uiy ´ biqe
ϱxx,uiy, x P X “ G{K

satisfying
sup
xPZ

|fnpxq ´ fpxq| ă ε.

‚ i.e., the density of finite NNs in continuous functions w.r.t. the compact convergence
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Examples: Horospherical HNN and SPD Net

Continuous Horospherical Hyperbolic NN

On the Poincaré ball model Bm :“ tx P Rm | |x| ă 1u equipped with the Riemannian metric
g “ 4p1 ´ |x|q´2

řm
i“1 dxi b dxi,

Srγspxq :“

ż

RˆBBmˆR
γpa,u, bqσpaxx,uy ´ bqeϱxx,uydadudb, x P Bm

ϱ “ pm ´ 1q{2, xx,uy “ log

ˆ

1 ´ |x|2E

|x ´ u|2E

˙

, px,uq P Bm ˆ BBm

Continuous Horospherical SPD Net

Srγspxq :“

ż

RmˆBPmˆR
γpa, u, bqσpa ¨ xx, uy ´ bqeϱ¨xx,uydadudb, x P Pm

ϱ “ p´ 1
2 , ¨ ¨ ¨ ,´ 1

2 ,
m´1
4 q, xx,uy “

1

2
log λ

`

uxuJ
˘

, px, uq P Pm ˆ BPm where λ is the diagonal in the

Cholesky decomposition
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Sketch Proof of Reconstruction Formula
‚ is based on Helgason-Fourier analysis on G{K
‚ Given a function f : G{K Ñ C, solve an integral equation Srγs “ f of unknown γ.
‚ Step 1: Turn Srγs to a Helgason-Fourier expression:

Srγspxq :“

ż

a˚ˆBXˆR
γpa, u, bqσpa ¨ xx, uy ´ bqeϱxx,uydadudb

“
1

2π

ż

R

„
ż

a˚ˆBX

γ7pλ{ω, u, ωq|cpλq|2epiλ`ϱqxx,uy dλdu

|cpλq|2

ȷ

|ω|´rσ7pωqdω.

‚ Step 2: Since inside r¨ ¨ ¨ s is the inverse Helgason-Fourier transform, put a separation-of-variables
form:

γ7

f,ρpλ{ω,u, ωq “ pfpλ,uqρ7pωq|cpλq|´2.

Then, by the construction, it is a particular solution:

Srγf,ρs “ ppσ, ρqqf,

where ppσ, ρqq :“ |W |

2π

ş

R σ7pωqρ7pωq|ω|´mdω.
‚ In the end, we employ γf,ρ as the definition of Rrf ; ρs
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