

# Fully-Connected Network on Noncompact Symmetric Space and Ridgelet Transform based on Helgason-Fourier Analysis

Sho Sonoda <sup>1</sup>    Isao Ishikawa <sup>1,2</sup>    Masahiro Ikeda <sup>1</sup>

<sup>1</sup>RIKEN Center for Advanced Intelligence Project (RIKEN AIP), Tokyo, Japan

<sup>2</sup>Ehime University, Ehime, Japan

The 39th International Conference on Machine Learning (ICML2022),  
Baltimore, Maryland USA  
July 17-23, 2022



# Main Contributions

In this study, we have

- devised a *fully-connected network  $S[\gamma]$  on noncompact symmetric spaces  $X = G/K$* , which covers Hyperbolic NNs and SPD Nets as special cases;
- derived the *ridgelet transform  $R[f; \rho]$* , a closed-form analysis operator satisfying the reconstruction formula  $S[R[f; \rho]] = ((\sigma, \rho))f$ , based on the *Helgason-Fourier transform on  $G/K$* , and
- presented a constructive proof of the *cc-universality of finite networks on  $G/K$*  by discretizing the reconstruction formula in a *coordinate-free and unified manner*

# A Noncompact Symmetric Space $G/K$

- is a homogeneous space  $G/K$  with *nonpositive sectional curvature* on which  $G$  acts transitively

## Definition (Noncompact Symmetric Space $G/K$ )

- Let  $G$  be a connected semisimple real Lie group, and
- let  $G = KAN$  be the Iwasawa decomposition.
- The quotient (the set of all left cosets)

$$X := G/K = \{gK \mid g \in G\},$$

is called a noncompact symmetric space.

## Example (Hyperbolic Space $\mathbb{H}^m$ )

for embedding words, and tree-structured dataset

## Example (SPD Manifold $\mathbb{P}_m$ )

or a manifold of positive definite matrices, e.g., covariance matrices

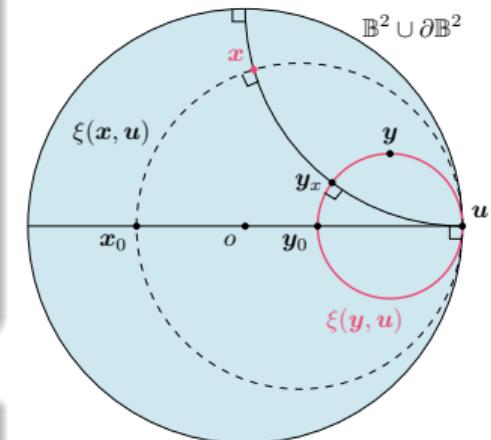


Figure: The Poincaré Disk  $\mathbb{B}^2$  is a 2-dim. Hyperbolic space

## Neural Networks on $G/K$

- are developing, but lack expressive power analysis
- Difficulty: There are no canonical ways to define an “affine map  $\mathbf{a} \cdot \mathbf{x} - b$  on manifold”

### (Reference) Euclidean NN

For any nonlinear function  $\sigma : \mathbb{R} \rightarrow \mathbb{R}$ , parameters  $(\mathbf{a}_i, b_i, c_i) \in \mathbb{R}^m \times \mathbb{R} \times \mathbb{R}$ , a Euclidean NN (a depth-2 fully-connected neural network on  $\mathbb{R}^m$ ) is given by

$$f(\mathbf{x}) = \sum_{i=1}^p c_i \sigma(\mathbf{a}_i \cdot \mathbf{x} - b_i), \quad \mathbf{x} \in \mathbb{R}^m$$

### Hyperbolic NNs (Ganea+18, Gulcehre+19, Shimizu+21)

- For each point  $x \in \mathbb{H}^m$ ,
- the affine map is re-defined by Gyrovector calculus,
- the elementwise activation is defined on a tangent space:  $\exp_0 \circ \sigma \circ \log_0(x)$

### SPDNets (Huang-Gool17, Dong+17, Gao+19)

- For an SPD matrix  $x \in \mathbb{P}_m$ ,
- BiMap layer:  $w^\top x w$
- ReEig layer:  $u^\top \max(0, \lambda - b) u$  where  $x = u^\top \lambda u$

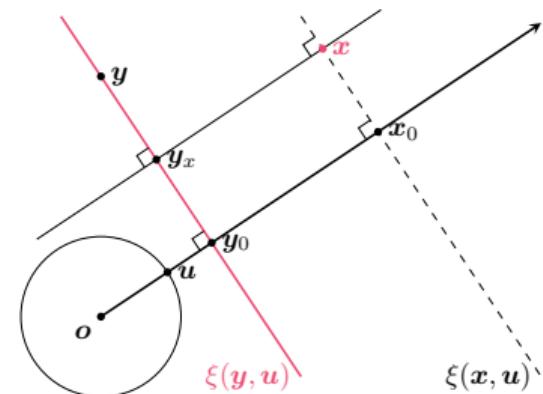
# Geometric Reformulation of Euclidean Fully-Connected Neuron $\sigma(\mathbf{a} \cdot \mathbf{x} - b)$

As a “*wavelet function* on the *signed distance* between a *point*  $\mathbf{x}$  and a *hyperplane*  $\xi$ ”:

$$\sigma(\mathbf{a} \cdot \mathbf{x} - b) = \sigma(rd(\mathbf{x}, \xi)), \quad (\text{geometric, or coordinate-free})$$

where

- $\mathbf{a} = r\mathbf{u}$  (polar coordinates  $(r, \mathbf{u}) \in \mathbb{R} \times \mathbb{S}^{m-1}$ )
- $\xi := \{\mathbf{y} \in \mathbb{R}^m \mid r\mathbf{u} \cdot \mathbf{y} = b\}$  (a hyperplane passing through point  $(b/r)\mathbf{u}$  with normal  $\mathbf{u}$ )
- $d(\mathbf{x}, \xi)$  signed distance from point  $\mathbf{x}$  to hyperplane  $\xi$
- $d \mapsto \sigma(d)$  wavelet function



# Main Results 1/3: A Continuous Neural Network on $G/K$

## Definition (Continuous Horospherical $X$ -NN)

$$S[\gamma](x) := \int_{\mathfrak{a}^* \times \partial X \times \mathbb{R}} \gamma(a, u, b) \sigma(a \cdot \langle x, u \rangle - b) e^{\varrho \langle x, u \rangle} da du db, \quad x \in X$$

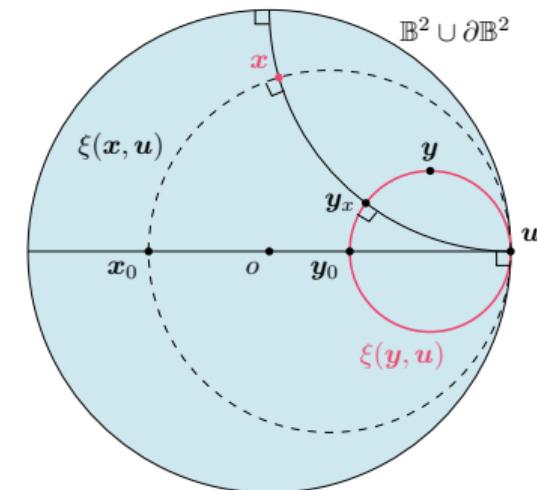
- i.e., a continuous frame defined by weighted fully-connected neurons  $x \mapsto \sigma(\dots)$
- $\mathfrak{a} = \mathfrak{a}^* = \mathbb{R}^r$  for  $r := \text{rank } X$  (Lie algebra and its dual of  $A$  of  $G = KAN$ )
- $\varrho \in \mathfrak{a}^*$  constant vector

### $\mathfrak{a}$ -valued composite distance $\langle x, u \rangle$

is a vector distance from the origin  $o$  to a horosphere  $\xi(x, u)$   
(i.e.,  $|\langle x, u \rangle|$  becomes the Riemannian distance)

### horosphere $\xi(x, u)$ passing through point $x \in X$ normal $u \in \partial X$

is a sphere in  $G/K$  with infinite radius (Recall that a Euclidean hyperplane is a *Euclidean sphere with infinite radius*)



## Main Results 2/3: Ridgelet Transform

- is an analysis operator (or a pseudo-inverse operator) of integral representation operator  $S$

### Definition (Ridgelet Transform)

For any function  $f : G/K \rightarrow \mathbb{C}$  and an auxiliary function  $\rho : \mathbb{R} \rightarrow \mathbb{R}$ ,

$$R[f](a, u, b) := \int_X c[f](x) \overline{\rho(a \cdot \langle x, u \rangle - b)} e^{\varrho \langle x, u \rangle} dx$$

where  $c[f]$  is a Helgason-Fourier multiplier.

### Theorem (Reconstruction Formula)

For any  $f \in L^2(X)$  (or  $f \in C_c^\infty(X)$ ),  $\sigma \in \mathcal{S}'(\mathbb{R})$ ,  $\rho \in \mathcal{S}(\mathbb{R})$ ,

$$S[R[f; \rho]] = ((\sigma, \rho)) f.$$

where  $((\sigma, \rho))$  is a scalar product.

- i.e., a *constructive* universal approximation theorem for *continuous* neural networks on  $G/K$

## Main Results 3/3: *cc*-Universality

- is a *constructive* universal approximation theorem for *finite* neural networks on  $G/K$

### Theorem (*cc*-Universality of $X$ -NNs)

For any  $\varepsilon > 0$ , compact set  $Z \subset X$ , functions  $f \in C(Z)$ ,  $\sigma \in \mathcal{S}'(\mathbb{R})$ ,  $\rho \in \mathcal{S}(\mathbb{R})$ , there exists a finite neural network of the form

$$f(x) := \sum_{i=1}^n c_i \sigma(a_i \cdot \langle x, u_i \rangle - b_i) e^{\rho \langle x, u_i \rangle}, \quad x \in X = G/K$$

satisfying

$$\sup_{x \in Z} |f_n(x) - f(x)| < \varepsilon.$$

- i.e., the density of finite NNs in continuous functions w.r.t. the compact convergence

## Examples: Horospherical HNN and SPD Net

### Continuous Horospherical Hyperbolic NN

On the *Poincaré ball model*  $\mathbb{B}^m := \{\mathbf{x} \in \mathbb{R}^m \mid |\mathbf{x}| < 1\}$  equipped with the Riemannian metric  $\mathbf{g} = 4(1 - |\mathbf{x}|)^{-2} \sum_{i=1}^m dx_i \otimes dx_i$ ,

$$S[\gamma](\mathbf{x}) := \int_{\mathbb{R} \times \partial \mathbb{B}^m \times \mathbb{R}} \gamma(a, \mathbf{u}, b) \sigma(a \langle \mathbf{x}, \mathbf{u} \rangle - b) e^{\varrho \langle \mathbf{x}, \mathbf{u} \rangle} da d\mathbf{u} db, \quad \mathbf{x} \in \mathbb{B}^m$$

$$\varrho = (m-1)/2, \langle \mathbf{x}, \mathbf{u} \rangle = \log \left( \frac{1 - |\mathbf{x}|_E^2}{|\mathbf{x} - \mathbf{u}|_E^2} \right), \quad (\mathbf{x}, \mathbf{u}) \in \mathbb{B}^m \times \partial \mathbb{B}^m$$

### Continuous Horospherical SPD Net

$$S[\gamma](x) := \int_{\mathbb{R}^m \times \partial \mathbb{P}_m \times \mathbb{R}} \gamma(\mathbf{a}, u, b) \sigma(\mathbf{a} \cdot \langle x, u \rangle - b) e^{\varrho \cdot \langle x, u \rangle} d\mathbf{a} du db, \quad x \in \mathbb{P}_m$$

$$\varrho = (-\frac{1}{2}, \dots, -\frac{1}{2}, \frac{m-1}{4}), \langle \mathbf{x}, \mathbf{u} \rangle = \frac{1}{2} \log \lambda(uxu^\top), \quad (x, u) \in \mathbb{P}_m \times \partial \mathbb{P}_m \text{ where } \lambda \text{ is the diagonal in the Cholesky decomposition}$$

# Sketch Proof of Reconstruction Formula

- is based on *Helgason-Fourier analysis* on  $G/K$
- Given a function  $f : G/K \rightarrow \mathbb{C}$ , solve an integral equation  $S[\gamma] = f$  of unknown  $\gamma$ .
- Step 1: Turn  $S[\gamma]$  to a *Helgason-Fourier expression*:

$$\begin{aligned} S[\gamma](x) &:= \int_{\mathfrak{a}^* \times \partial X \times \mathbb{R}} \gamma(a, u, b) \sigma(a \cdot \langle x, u \rangle - b) e^{\varrho \langle x, u \rangle} da du db \\ &= \frac{1}{2\pi} \int_{\mathbb{R}} \left[ \int_{\mathfrak{a}^* \times \partial X} \gamma^\sharp(\lambda/\omega, u, \omega) |\mathbf{c}(\lambda)|^2 e^{(i\lambda + \varrho) \langle x, u \rangle} \frac{d\lambda du}{|\mathbf{c}(\lambda)|^2} \right] |\omega|^{-r} \sigma^\sharp(\omega) d\omega. \end{aligned}$$

- Step 2: Since inside  $[\dots]$  is the *inverse Helgason-Fourier transform*, put a separation-of-variables form:

$$\gamma_{f,\rho}^\sharp(\lambda/\omega, u, \omega) = \widehat{f}(\lambda, u) \overline{\rho^\sharp(\omega)} |\mathbf{c}(\lambda)|^{-2}.$$

Then, by the construction, it is a particular solution:

$$S[\gamma_{f,\rho}] = ((\sigma, \rho)) f,$$

where  $((\sigma, \rho)) := \frac{|W|}{2\pi} \int_{\mathbb{R}} \sigma^\sharp(\omega) \overline{\rho^\sharp(\omega)} |\omega|^{-m} d\omega$ .

- In the end, we employ  $\gamma_{f,\rho}$  as the definition of  $R[f; \rho]$