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Introduction

Recent architectures for object detection adopt a feature pyramid network as a
backbone for deep feature extraction:

In this work, we opt to learn a dataset-specific architecture for efficient feature
pyramid networks

Starting by a complex network, we adopt variational inference to prune redundant
connections.
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Feature Pyramid Networks

Feature pyramid networks (FPNs) were designed as a solution for detecting the
objects of an image at different scales

I The bottom-up pathway (green nodes) is
the feed-forward computation of the
backbone CNN,

I A building block is responsible for
constructing the top-down feature maps
(red nodes)

I Recent works propose more
sophisticated modules and architectures.
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Proposed Pyramid Network

Initial architecture of our network:
Bottom-up pathway, a hidden and an output layer.

I Each intermediate block:

F Input features F layer
level = {F1, . . . , FN}

F Input Connections weighted by:
W

layer
level = {w1, . . . , wN}

F Output: Fout = Conv(
∑N

i=1 wiFi∑N
i=1 wi + ε

)
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Variational Inference

In our method, we treat each weight w associated with each connection on the
network as a stochastic variable coming from a parametric distribution p(W).

The goal is to find an approximation for the posterior p(W|D)

Using Variational Inference and the SGVB method the loss becomes:

L̃(W) =
1

L

∑
i=1

log p(Y|X,W = f(w, ε))−KL(qφ(W)||p(W)). (1)
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Choice of Prior Distribution (1)

The mechanism of Automatic Relevance Determination using factorized
Gaussians

I Prior Distribution

p(W) =
∏
i

p(wi) where wi ∼ N (0, σ̂2
i )

I Approximate Posterior Distribution

q(W) =
∏
i

q(wi) where wi ∼ N (µi, σ
2
i )

The optimal hyperparameter σ̂ of the prior distribution can be calculated

∂L̃(W)

∂σ̂2
i

= 0 which yields σ̂2
i = µ2

i + σ2
i
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Choice of Prior Distribution (2)

We extended the mechanism of Automatic Relevance Determination (ARD) in
order to study the correlation between the connection weights

I Prior Distribution

p(W) = N (w|0, Σ̂),

I Approximate Posterior Distribution

q(W) = N (w|µ,Σ),

where Σ = LLT (Cholesky decomposition)

The optimal hyperparameter Σ̂ can be calculated directly by optimizing the VLB
Empirical Bayes

∂L̃(W)

∂Σ̂
= 0 which yields Σ̂ = µµT + Σ
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Evaluating model’s Performance

Numerical results for object segmentation trials on COCO

Network Model AP Params Inference

Mask RCNN

BiFPN 0.271 1.60M 7.8± 0.01
PANet 0.268 1.74M 6.7± 0.01
NAS-FPN 0.280 1.53M 5.4± 0.10
PConv 0.279 1.25M 8.4± 0.77
HRNet 0.288 1.32M 3.2± 0.17
ARD 0.290 1.67M 6.5± 0.01
FullARD 0.299 1.74M 6.8± 0.02
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Evaluating Probabilistic Pruning

Numerical results for instance segmentation trials on COCO

Model AP Cons Inference Params
No Pruning 0.299 63 14.2± 0.1 1.74
Rand. Pruning 0.222 16 8.1± 0.04 1.60
Lasso-based 0.283 9 4.8± 0.02 1.32
Molchanov 0.286 9 6.1± 0.03 1.38
Frankle 0.280 9 7.1± 0.02 1.40
ARD 0.290 9 6.5± 0.01 1.39
FullARD 0.299 16 6.8± 0.02 1.60
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Evaluating Model’s Architecture

Different resulting architectures for the trained model, combined with the proposed
FullARD prior on Faster RCNN on three different datasets
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Evaluating Model’s Uncertainty

By sampling several w ∼ q(w|D) we can ensemble the resulting architectures and
acquire uncertainty estimates.

Quantitative evaluation of uncertainty estimates for Faster RCNN trained on
COCO.
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Thank You!
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