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Introduction

@ Recent architectures for object detection adopt a feature pyramid network as a
backbone for deep feature extraction:

@ In this work, we opt to learn a dataset-specific architecture for efficient feature
pyramid networks

@ Starting by a complex network, we adopt variational inference to prune redundant
connections.
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|
Feature Pyramid Networks

@ Feature pyramid networks (FPNs) were designed as a solution for detecting the
objects of an image at different scales

» The bottom-up pathway (green nodes) is P O
the feed-forward computation of the ’

backbone CNN,

> A building block is responsible for
constructing the top-down feature maps

(red nodes) Ps O—’
> Recent works propose more Py O—>

sophisticated modules and architectures.
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Proposed Pyramid Network

@ Initial architecture of our network:
Bottom-up pathway, a hidden and an output layer.

» Each intermediate block:
* Input features /Y% = {Fy,..., Fn}

* Input Connections weighted by:

T
N
PR ’u),;Fi
* Output: Fopyy = Conv(%;)

i=1 Wi T €
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Variational Inference

@ In our method, we treat each weight w associated with each connection on the
network as a stochastic variable coming from a parametric distribution p(W).

@ The goal is to find an approximation for the posterior p(W|D)

@ Using Variational Inference and the SGVB method the loss becomes:

L(W) = % > logp(YIX, W = f(w,e€)) — KL(g5(W)|lp(W)). (1)

=1
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Choice of Prior Distribution (1)

@ The mechanism of Automatic Relevance Determination using factorized

Gaussians
> Prior Distribution » Approximate Posterior Distribution
p(W) = [ [ p(w:) where w; ~ N(0,67) q(W) = [ [ a(w:) where w; ~ N(ui,07)

@ The optimal hyperparameter & of the prior distribution can be calculated

OL(W)
D62

=0 which yields 67 = p? + o7
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Choice of Prior Distribution (2)

@ We extended the mechanism of Automatic Relevance Determination (ARD) in
order to study the correlation between the connection weights

» Prior Distribution » Approximate Posterior Distribution

p(W) = N(w|0, %), q(W) = N(wlu, ),
where & = LLT (Cholesky decomposition)

@ The optimal hyperparameter 3 can be calculated directly by optimizing the VLB
Empirical Bayes

aza(gm =0 whichyields & = pu” + %
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Evaluating model’s Performance

@ Numerical results for object segmentation trials on COCO

Network Model AP Params Inference
BiFPN 0.271 1.60M 7.8+ 0.01

PANet 0.268 1.74M 6.7+ 0.01

NAS-FPN | 0.280 1.53M 5.4+0.10

Mask RCNN PConv 0.279 1.25M 8.4+ 0.77
HRNet 0.288 1.32M 3.24+0.17

ARD 0.290 1.67TM 6.5 £ 0.01

FullARD 0.299 1.74M 6.8 +0.02
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Evaluating Probabilistic Pruning

@ Numerical results for instance segmentation trials on COCO

Model AP Cons Inference  Params
No Pruning 0.299 63 14.2 +£0.1 1.74
Rand. Pruning | 0.222 16 8.1+ 0.04 1.60
Lasso-based 0.283 9 4.8 +£0.02 1.32
Molchanov 0.286 9 6.1 +0.03 1.38
Frankle 0.280 9 7.1 4+0.02 1.40
ARD 0.290 9 6.5 £0.01 1.39
FullARD 0.299 16 6.8 +0.02 1.60
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Evaluating Model’s Architecture

@ Different resulting architectures for the trained model, combined with the proposed
FullARD prior on Faster RCNN on three different datasets

P, O— P P Cé
P Cg O—.
O—.

“COCO” “Cards” “Plants”
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Evaluating Model’s Uncertainty

@ By sampling several w ~ ¢(w|D) we can ensemble the resulting architectures and
acquire uncertainty estimates.

@ Quantitative evaluation of uncertainty estimates for Faster RCNN trained on
COcCO.
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Thank You!



