General-purpose, long-context autoregressive modeling with **Perceiver AR**

Oriol Vinvals

Matt Botvinick

Hannah Sheahan

Neil Zeahidour Jean-baptiste Alavrac

Jesse Engel

Joao Carreira

Motivation: Autoregressive Transformer for Long Sequences

- Transformers are great for autoregressive modeling (PaLM, Chinchilla)
- Self-attention is typically O(n²) in compute and memory
- Real-world sequences are long!
- Example: modeling full pieces of music

10-0		n north
ļ	1 Second	

MxM

Solution: Decouple sequence length from compute

Architecture: Inputs

Keys/Values are all M inputs (PerceiverAR)

Keys/Values are all M inputs (PerceiverAR)

Queries are last N inputs (**rAR**)

Keys/Values are all M inputs (PerceiverAR)

Queries are last N inputs (**rAR**)

Inputs in the "future" are masked

- A sees only **PerceiverA**
- A predicts R

Keys/Values are all M inputs (PerceiverAR)

Queries are last N inputs (**rAR**)

Inputs in the "future" are masked

- A sees only PerceiverA
- A predicts R
- \rightarrow N "causally correct" latents
- \rightarrow Can self-attend with O(n²)

Architecture: Self-attention

Decoder-only style causal masking Complexity is dependent on N (number of latents) Independent of M (actual input length)

R <EOS>

as

Inputs

Model outputs cover only last N positions

Training: Use random crops

Inference: Queries slide forward Always cover last N positions

Perceiver AR scales to long contexts and large depth

Perceiver AR scales to long contexts and large depth

Perceiver AR scales to long contexts and large depth

Results on TPUv3, batch size 1

SPS: measure of real compute requirements

Results on long-context images and text

ImageNet 64x64 64x64x3 = 12,288 elements

Model	Туре	Bits/Dim
PixelCNN	AR	3.57
Sparse Transformer	AR	3.44
Routing Transformer	AR	3.43
Combiner	AR	3.42
VDM	Diff	3.40
Perceiver AR (ours)	AR	3.40

Project Gutenberg books (PG-19)

Model	Context length	# layers	Val ppl.	Test ppl.
Transformer-XL (Rae et al., 2019)	512+1024	36	45.5	36.3
Compressive Transformer (Rae et al., 2019)	512+512+2x512	36	43.4	33.6
Routing Transformer (Roy et al., 2021)	8192	22	-	33.2
Perceiver AR (ours)	2048	60	45.9	28.9
Perceiver AR (ours)	4096	60	45.9	29.0

Perceiver overfits for larger context on PG-19 (only ~28k training books)

Context scaling in the large data regime

Same parameter count (~500M), expanding context

Model	Context	Eval ppl.	Train Steps/se	C
Perceiver AR	1024	14.88	2.19	
Perceiver AR	4096	14.60	2.09	16x longer
Perceiver AR	8192	14.57	1.95	reduced spee
Perceiver AR	16384	14.56	1.75	

Varying compute at eval

Varying compute at eval

16 latents 3.576 bits/dim, 2.0 mins/sample

1024 latents 3.402 bits/dim, 3.7 mins/sample

Same parameters always used

Varying compute at eval

16 latents 3.576 bits/dim, 2.0 mins/sample

1024 latents 3.402 bits/dim, 3.7 mins/sample

1536 latents 3.399 bits/dim, 4.7 mins/sample

Same parameters always used

Conclusion

- Retains all the benefits of typical decoder-only Transformers
- Decouples input length from compute/memory requirements
- Demonstrated efficacy across modalities
- Simple to implement
 - Replace bottom self-attend layer with cross-attend

Blog w/ audio examples: magenta.tensorflow.org/perceiver-ar

Author notes: dpmd.ai/dm-perceiver-ar

Code: <u>github.com/google-research/perceiver-ar</u>

Contact: fjord@google.com, drewjaegle@deepmind.com

