
General-purpose, long-context 
autoregressive modeling with
Perceiver AR



Motivation: Autoregressive Transformer for Long Sequences
● Transformers are great for autoregressive modeling (PaLM, Chinchilla)
● Self-attention is typically O(n2) in compute and memory
● Real-world sequences are long!
● Example: modeling full pieces of music
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Solution: Decouple sequence length from compute
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Architecture: Inputs
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Keys/Values are all M inputs (PerceiverAR)

Architecture: Cross-attend
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Queries are last N inputs (rAR)
Keys/Values are all M inputs (PerceiverAR)

Architecture: Cross-attend
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● A predicts R
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Architecture: Cross-attend
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Queries are last N inputs (rAR)

→ N “causally correct” latents
→ Can self-attend with O(n2)

Inputs in the “future” are masked
● A sees only PerceiverA
● A predicts R

Keys/Values are all M inputs (PerceiverAR)

Architecture: Cross-attend



Decoder-only style causal masking
Complexity is dependent on N (number of latents)
Independent of M (actual input length)
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Model outputs cover only last N positions

Training: Use random crops

Inference: Queries slide forward
Always cover last N positions
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Perceiver AR scales to long contexts and large depth

Out of memory 

🤷

Results on TPUv , batch size 

SPS: measure of real compute 
requirements
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Perceiver AR scales to long contexts and large depth

Results on TPUv , batch size 

SPS: measure of real compute 
requirements



Project Gutenberg books (PG-19)

ImageNet 64x64 
x x  = ,  elements

Perceiver overfits for larger context on PG-  (only ~ k training books)

Results on 
long-context 
images and text



Context scaling in the large data regime
Same parameter count (~ M), expanding context
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x longer 
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Without 
retraining 
params…
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Varying compute at eval

1024 latents
.  bits/dim, .  mins/sample
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Same parameters always used
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Varying compute at eval

Same parameters always used
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Conclusion
 

● Retains all the benefits of typical decoder-only Transformers
● Decouples input length from compute/memory requirements
● Demonstrated efficacy across modalities
● Simple to implement

○ Replace bottom self-attend layer with cross-attend

Blog w/ audio examples: magenta.tensorflow.org/perceiver-ar
Author notes: dpmd.ai/dm-perceiver-ar

Code: github.com/google-research/perceiver-ar
Contact: fjord@google.com, drewjaegle@deepmind.com

https://magenta.tensorflow.org/perceiver-ar
http://dpmd.ai/dm-perceiver-ar
https://github.com/google-research/perceiver-ar

