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Introduction

Motivation & Background

Collaborative Empirical Risk Minimization (ERM)

min
x∈Rd

f (x) =
1

n

n∑
i=1

(
fi (x) :=

1

m

m∑
j=1

f (x , ξi,j)︸ ︷︷ ︸
fij (x)

)

– ξi,j ∼ Di is the j-th samples of the local dataset Di of device i

Typical topology structures
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Introduction

Motivation & Background

Challenges:

– Sampling variance within devices: fij ̸= fi , for all device i .

– Data heterogeneity across devices: fi ̸= f , for any device i .

Existing first-order optimization methods

– SGD-based methods: DSGD (Ram et al., 2009), Local-SGD (Konevcnỳ
et al., 2016), Gossip-PGA (Chen et al., 2021); → efficiency

– Variance-Reduction (VR): SAGA (Defazio et al., 2014), (L-)SVRG (Qian
et al., 2021), SARAH (Nguyen et al., 2017); → ((((((

inner-variance

– Gradient-Tracking (GT): DSGT (Pu and Nedić, 2020), DSA (Mokhtari

and Ribeiro, 2016), GT-VR (Xin et al., 2020); → (((((((
external variance

Question: Can we unify these above methods and beyond?
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Problem Formulation

Related Work

The existing state-of-the-art framework

Schemes Structures

Framework VR GT Local PGA PS Gossip

Hu et al. (2017) ✓ % % % % %

Cooperative SGD
% % ✓ % ✓ ✓(Wang and Joshi, 2021)

Decentralized (Gossip) SGD
% % ✓ % ✓ ✓(Koloskova et al., 2020)

GT-VR (Xin et al., 2020) ✓ ✓ % % % ✓

Gorbunov et al. (2021) ✓ ✓ ✓ % ✓ %

SPP (Ours) ✓ ✓ ✓ ✓ ✓ ✓

Contribution: Unify all these schemes both in PS and Gossip structures

with rate guarantee showing clear dependency on these schemes.
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SPP Framework

The Proposed Framework

Sample-wise Push-Pull (SPP) Framework A (Γk ,Rk ,Ck)

Xk+1 = RkXk − αΓkYk ,

Yk+1 = CkYk +∇F (Xk+1)−∇F (Xk),

– Γk ,Rk ,Ck ∈ RM×M , M = nm are matrices to be properly designed

An illustration of a two-level augmented graph with n = 6,m = 4
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The Proposed Framework

Sample-wise Push-Pull (SPP) Framework A (Γk ,Rk ,Ck)

Xk+1 = RkXk − αΓkYk ,

Yk+1 = CkYk +∇F (Xk+1)−∇F (Xk),

– Γk ,Rk ,Ck ∈ RM×M , M = nm are matrices to be properly designed

Sampling on augmented graph:

Γk := Λk+1

(
Wk ⊗ 11T

) Λk

bk
,

− Λk = diag (ek); ek = [eT
1,k , · · · , eT

n,k ]
T , ei,k ∈ {0, 1}m×1; bk := 1Tei,k

Intra and inter consensus guarantee

Rk := IM − Λk+1︸ ︷︷ ︸
unelected part

+ Γk ,

Accurate gradient estimation tackling data heterogeneity

Ck = Gk ⊗ Vk .
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SPP Framework

Recovering Existing Algorithms and Beyond

Connections to well-known VR methods

Algorithms SAGA L-SVRG SARAH

bk b {b, m} {b, m}
Vk Jm {Im, Jm} Jm

Recovery of other existing schemes and new algorithms

Algorithms Wk Vk Gk

SAGA / L-SVRG 1 {Im, Jm} 1

DSGD/Gossip-SGD {W , Jn} Im In

Local SAGA†/Local-SVRG {In, Jn} {Im, Jm} In

GT-SAGA/PGA-GT-SAGA† {W , Jn} Jm {W , Jn}
“†”: New algorithms obtained from the framework

New Insights: An interesting connection among VR methods; A unifying

perspective for GT- and VR-based methods.
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Main Results

Convergence Results

Assumptions

– Each fi is µ-strongly convex1 and fij is expected L-smooth;

– Bounded stochastic gradient variance σ∗ (inner variance), and data
heterogeneity ζ∗ (external variance) at optimum x∗;

– The expected spectral norm of the doubly stochastic matrix Wk

satisfies ρr,W := E
[
∥Wk − Jn∥22

]
< 1, ∀k ⩾ 0.

Linear convergence without VR and GT

Consider algorithms A (·, ·,Ck ≡ IM) with batch-size b. Suppose the above
assumptions hold and µ > 0. There exists a (constant) stepsize α such that

E
[
∥x̄k − x∗∥2

]
⩽ γkT0 +

α3

1− γ
O
(

ρr,WLζ∗

(1− ρr,W )2

)
+

α2

1− γ
O
(
σ∗

nb

)
+

α3

1− γ
O
(

ρr,WLσ∗

b (1− ρr,W )

)
,

where γ < 1 is the linear rate; T0 is the initialization error.

1
Results for convex cases can be found in the paper.
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Main Results

Convergence Results

Assumptions

– Each fi is µ-strongly convex and fij is expected L-smooth;

– Bounded stochastic gradient variance σ∗ (inner variance), and data
heterogeneity ζ∗ (external variance) at optimum x∗;

– The expected spectral norm of the doubly stochastic matrix Wk

satisfies ρr,W := E
[
∥Wk − Jn∥22

]
< 1, ∀k ⩾ 0.

Algorithms Obtained Complexity2

SAGA*/L-SVRG*
(

L
µ
+ 1

pq

)
log 1

ε

DSGD*/Gossip-PGA L

µ(1−ρr,W )
+ σ∗

nbµ2ε
+

√
L(bζ∗+(1−ρr,W )σ∗)

µ3(1−ρr,W )2bε

Local SAGA†/Local-SVRG* L

µ(1−ρr,W )
+ 1

pq
+
√

Lζ∗

µ3(1−ρr,W )2ε

GT-SAGA†/PGA-GT-SAGA†
(

L

µ(1−ρr,W )2
+ m

b

)
log 1

ε

“*” : obtain best-known rate; “†”: obtain new algorithm or new rate

2
r := P (Wk = Jn); p := P (Vk = Jm); q := E [bk/m|Vk = Jm ]
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Main Results

Numerical Experiments

Regularized logistic regression for image classification

Directed ring graph with n = 8 Exponential graph with n = 50

Performance comparison of several SOTA algorithms on
CIFAR-10 dataset with unbalanced label distribution

Parameter Settings:

Dataset: CIFAR-10;

# Training: 50000;

# Testing: 10000;

# Nodes (n): {8, 50};

Batch-size (b): 200/n;

Step-size (α): 0.008;

Regularization (λ): 0.001.
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Conclusion

Conclusion and Future Work

Conclusion

– Propose a new framework that unifies GT, VR, Local and PGA
schemes in both PS and Gossip structures;

– Provide convergence results which show clear dependency of
the convergence performance on these above schemes

– Recover various existing algorithms with best-known/new rates
and design new algorithms building on this framework;

Future Work

– Topology design with more efficient communication;

– Improved convergence analysis taking into account the
communication and computation trade-off.
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Thank you !
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Qian, X., Qu, Z., and Richtárik, P. (2021). L-SVRG and L-Katyusha with arbitrary sampling. Journal of Machine
Learning Research, 22(112):1–47.

12 / 13



Tackling Data Heterogeneity: A New Unified Framework for Decentralized SGD (ICML 2022) ©2022 The Authors

Reference

References II
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