Co-Training Improves Prompt-Based Learning for Large Language Models

Hunter Lang, Monica Agrawal, Yoon Kim, David Sontag

- In-context learning
- Format example with template

- In-context learning
- Format example with template
- Predict the next word

- In-context learning
- Format example with template
- Predict the next word
- Map to a label (Negative = -1)

- In-context learning
- Format example with template
- Predict the next word
- Map to a label (Negative = -1)
- Optional: also give a labeled example

Review: this movie was great.
Positive or Negative? Positive

Prompt-Based Learning: Problems

Hard to deploy (expensive APIs, data restrictions)

Can significantly underperform supervised learning

Sensitive to labeled examples and their ordering.

Prior Work: Calibrate Before Use (CBU)

- Improve performance by renormalizing output probabilities.
- Estimate the rescaling in a data-free manner using null inputs ("N/A", "", etc.)
- Makes GPT-3 less sensitive to example ordering and improves accuracy.

Prior Work: Calibrate Before Use (CBU)

- Improve performance by renormalizing output probabilities.
- Estimetc.) Can we do better if we have a large amount of unlabeled data?
- Makes GPT-3 less sensitive to example ordering and improves accuracy.

Background: Co-Training [Blum and Mitchell '98]

- A semi-supervised approach for leveraging unlabeled data.
- Pair of models are trained over different "views" of the same underlying data.

View $\phi_0(X)$

 $\phi_1(X)$

Model

 h_0

 h_1

Lab tests

X-ray

Background: Co-Training [Blum and Mitchell '98]

- A semi-supervised approach for leveraging unlabeled data.
- Pair of models are trained over different "views" of the same underlying data.

View
$$\phi_0(X)$$
 $\phi_1(X)$ Model h_0 h_1

• The two models $h_0(\phi_0(X))$ and $h_1(\phi_1(X))$ are iteratively trained on confidently-labeled data points from the **other model.**

Background: Co-Training [Blum and Mitchell '98]

Catch: need a good initial model to start the co-training process.

(Most) Prior work: use a small amount of labeled data to train initial model.

Our work: use a zero- or few-shot LLM as the initial model

• The two models $h_0(\phi_0(X))$ and $h_1(\phi_1(X))$ are iteratively trained on confidently-labeled data points from the other model.

Combine co-training (Blum and Mitchell, 1998) with prompt-based learning

Few-shot or zero-shot LLM is the initial model

 Combine co-training (Blum and Mitchell, 1998) with prompt-based learning

Few-shot or zero-shot LLM is the initial model

 Key idea: refine the Large Language Model (GPT-3 / T0) together with a much smaller model (BERT, DeBERTa).

 Combine co-training (Blum and Mitchell, 1998) with prompt-based learning

Few-shot or zero-shot LLM is the initial model

 Key idea: refine the Large Language Model (GPT-3 / T0) together with a much smaller model (BERT, DeBERTa).

Improves few-shot and zero-shot performance for GPT-3 and T0.

 Combine co-training (Blum and Mitchell, 1998) with prompt-based learning

Few-shot or zero-shot LLM is the initial model

 Key idea: refine the Large Language Model (GPT-3 / T0) together with a much smaller model (BERT, DeBERTa).

Improves few-shot and zero-shot performance for GPT-3 and T0.

• **Distills** the large language model into a smaller task-specific model

Combine co-training (Blum and Mitchell, 1998) with prompt-based

Key challenge: how do we fine-tune the LLM?

Answer: depends on the model!

Setting #1 (GPT-3): no gradient access, output probabilities only

Setting #2 (T0): full model access, can compute gradients, but full-fine-tuning is too inefficient

Distills the large language model into a smaller task-specific model

Setting #1: Few-shot GPT-3

Setting #1: Label model details

Setting #1: Other model

Setting #1: Few-shot results

Model	View	RTE (2-class)	CB (3-class)	TREC (6-class)
GPT-3 4-shot (from Zhao et al. (2021))	*	58.7 (11.9)	45.2 (19.4)	60.2 (7.6)
Calibrate Before Use (CBU) (Zhao et al., 2021)	*	60.4 (8.1)	60.7 (6.7)	69.7 (1.4)
Prompt-based FT (Gao et al., 2021)	*	52.8 (0.9)	84.4 (3.2)	54.8 (2.9)
Label Model (no co-training)	ϕ_0	62.8	76.8	77.2
Label Model → DeBERTa distillation	ϕ_1	67.2 (0.5)	81.6 (2.2)	63.3 (0.4)
Label Model + <i>co-training</i>	ϕ_0	64.9 (1.1)	83.5 (2.3)	78.3 (1.2)
DeBERTa-large + co-training	ϕ_1	67.4 (2.3)	86.2 (3.2)	80.6 (1.1)

Setting #2: Co-Training with Zero-shot Learning

T0 [Sanh et al. '21]: trained on tasks converted as natural instructions ⇒ meaningful zero-shot learning performance.

 $h_0(\phi_0(X))$

Soft prompt vectors appended to T0 word embeddings.

Setting #2: Co-Training with Zero-shot Learning

T0 [Sanh et al. '21]: trained on tasks converted as natural instructions ⇒ meaningful zero-shot learning performance.

Soft prompt vectors $h_0(\phi_0(X))$ appended to T0 word embeddings.

 $h_1(\phi_1(X))$

DeBERTa + MLP classifier (same as before).

Setting #2: Co-Training with Zero-shot Learning

Model/Algorithm	View	RTE	СВ	BoolQ
T0-3B (best) (Sanh et al., 2022)	ϕ_0	68.9	66.1	59.1
T0-3B zero-shot (no co-training)	ϕ_0	68.9	58.9	56.4
T0-3B soft prompt + <i>co-training</i>	ϕ_0	87.0	67.9	49.1
DeBERTa-large + co-training	ϕ_1	86.3	67.9	48.9
T0-3B soft prompt on full train	ϕ_0	90.6	80.4	86.9
DeBERTa-large on full train	ϕ_1	93.3	95.2	86.1

Best-performing T0 prompt

Cotrained LLM (ϕ_0) and DeBERTa (ϕ_1)

Summary

- Co-Training can:
 - Improve prompt-based learning by fine-tuning the LLM with another model
 - **Distill** the LLM to a smaller, task-specific model

- Future Directions:
 - Co-Training + Prompting with structured output spaces
 - Explore other efficient fine-tuning methods