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I Motivation

« We have a decision variable x
(within our control, e.g., crop
nutrients) and a context variable ¢
(uncontrollable, e.g., amount of
sunlight in a day).

fx 0

30

140
25 120

20 - 100

- 80
C 15
- 60

10

Environment s
chosen

0

3 4 5 6
We choose X



I Motivation

« We have a decision variable x
(within our control, e.g., crop
nutrients) and a context variable ¢
(uncontrollable, e.g., amount of
sunlight in a day).

« We desire large f(x,¢) (e.g., final
size of crop). f is unknown and
costly to evaluate (in terms of
time, money etc.).
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| Stochastic BO

f&x©)
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* The same idea appliesif cisa
random vector distributed
according to known distribution p.
We may then desire to maximize
the expected value E. _,[f (x, c)].
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| Distributionally robust BO

f&x©)
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» Suppose the environment is an
adversary that is allowed to
choose the true distribution among
a set of distributions known as the
uncertainty set U:

U={q |d(p,q) <€}
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| Distributionally robust BO

f&x©)

140

» Suppose the environment is an
adversary that is allowed to
choose the true distribution among
a set of distributions known as the
uncertainty set U:

U={q |d(p,q) <€}

* In the worst case, it chooses the
distribution that minimizes our
expected value, called the worst-
case distribution q.
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| Distributionally robust BO

f&x©)

140

* IEc~p[f(X1:C)] > IEc~p[f(X2:C)]; bUt

I(}lel‘lrll IEc~q[f(X1f C)] < rnEl‘ll} IEc~q [f(XZI C)];

.e., X, is more distributionally
robust.
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| Distributionally robust BO

* Ichvp[f(xbc)] > IEc~p[f(X2:C)]; bUt

I(}lel‘lrll Ec~q[f(xli C)] < HIEI‘Z? IEc~q[f(X2' C)];

l.e., X, is more distributionally

robust.

* The learner is required to learn the

optimal distributionally robust

point

x* := maxmin [E
XeEX q€eU

c~qlf (x,0)].
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I General algorithm

Algorithm 1 Generalized DRBO (Kirschner et al., 2020)

1: Input: GP with kernel £, score function «

2: for iterationt = 1 to 7' do

3:  Obtain reference distribution p; and margin &,
Compute ucb;, := (1 (x,C;)+Bro(x,C;)) ;.

4
5:  Select action 2; = argmax,. y a(ucb’,, p;, €;)
6:  Observe ¢; ~ pf and y; = f(x¢, ) + &
7
8

Update GP posterior with Dy1q := {(24,¢i,y:) H_y
: end for

* InKirschneretal.l,a = rreljun Ec~qlucb®(x, €)] which requires solving a convex optimization
. . . q
problem with a discretized context set C

- Solving general convex optimization problems with interior-point methods incurs O (|C|3)
time. Scales poorly with |C]

1 Kirschner, J., Bogunovic, ., Jegelka, S., & Krause, A. (2020, June). Distributionally robust Bayesian optimization. In International Conference on
Artificial Intelligence and Statistics (pp. 2174-2184). PMLR.



I Approximating the convex opt. solution
t

€
« Define the = gg&l Ecqlucbh(x, c)].

» V(e) is convex with respect to the margin € (size of the uncertainty set U) when d
IS convex



I Approximating the convex opt. solution
t

€
« Gotoh et al. (2020)" defined the worst-case sensitivity S as the gradient of V(¢)
as € — 0, and derived closed forms of § for many distribution distances.

 Since I/ (¢) is convex, we can lower bound V (¢€) with its linear approximation
around € = 0 with the function W (e) constructed using S.




I Approximating the convex opt. solution
t
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« However, the approximation W (¢) gets arbitrarily worse as € increases. We can

refine it further by computing (cheaply) €* and V(¢*) (worst possible value of
V(€)). By the convexity of VV(€), we can then upper and lower bound V(¢) into a

region termed the



I Approximating the convex opt. solution
T

V(e™)

« Our approximation titled MinimaxApprox is then a piece-wise linear
bisection of the valid region. This minimizes the maximum possible
approximation error incurred.
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| Computational efficiency

Table 1. Comparing time complexity of DRBO algorithms utilizing the worst-case expected value (Kirschner et al., 2020) vs. our
fast approximation called MiNIMA XA PPROX with various distribution distances d. The worst-case expected value 1s obtained by
solving a general convex optimization problem with |C| variables using interior point methods which, we assume, incur Q(|C|?) time.
Distribution distance d MINIMA X APPROX

Maximum mean discrepancy (MMD)  O(|C|?) O(|C|?)

Total variation (TV) O(lC|?) o(|C))

Modified y?-divergence (\?) O(|CJ?) O(|C))

Wasserstein metric (W) O(|C|°) O(IC|?)
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| Approximation quality

» Robust regret is bounded by

Ry < 46r \/ T (o + oz )+Z B, e+ 2AT)

 Scales linearly in T, however so does the robust regret of the previous
work in the same setting. Our approximation does no worse than the exact
solution in terms of dependenceon T.

» Confirms intuition that better approximation (4;:*) ultimately leads to
better robust regret.



I Choice of distribution distance

» Worst-case sensitivity has interpretable meanings: for e.g., worst-case sensitivity when d
is y2-divergence is the variance of outcome values g, while that when using total variation
(TV) is the range.



I Choice of distribution distance

» Worst-case sensitivity has interpretable meanings: for e.g., worst-case sensitivity when d
is y2-divergence is the variance of outcome values g, while that when using total variation
(TV) is the range.

- Denoting MinimaxApprox as V, in some regimes of ¢, V can be re-written as a linear
combination of the expected value, worst-case sensitivity, and the . Presence
of worst-case sensitivity term provides interpretability and guides choice of d.

€d

2€* min|g;

=5 €d €d
Vatearg) = (1= 5% ) Bylo) + G8ul0) +
d /) =

Expected Worst-case
value sensitivity
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| Experiments: Robust regret

Comparing the robust regret of stochastic GP-UCB, IV, (previous work) and MinimaxApprox (ours)

Synthetic random functions:
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| Experiments: Robust regret

Cumulative robust regret

Comparing the robust regret of stochastic GP-UCB, W/,

Wind power dataset:
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| Experiments: Computation time
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| Experiments: Error-time trade-off

Mean approximation error
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| Summary

« Distributionally robust Bayesian optimization (DRBO) is a novel setting for
Bayesian optimization (BO) with stochastic context variables.



| Summary

« Distributionally robust Bayesian optimization (DRBO) is a novel setting for
Bayesian optimization (BO) with stochastic context variables.

« We borrow a concept from the distributionally robust optimization (DRO)
literature known as worst-case sensitivity to formulate a fast algorithm.
» Theoretical bounds

« Empirically competitive with the previous method" while incurring significantly less
computation time
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| Summary

« Distributionally robust Bayesian optimization (DRBO) is a novel setting for
Bayesian optimization (BO) with stochastic context variables.

« We borrow a concept from the distributionally robust optimization (DRO)
literature known as worst-case sensitivity to formulate a fast algorithm.
» Theoretical bounds

« Empirically competitive with the previous method" while incurring significantly less
computation time

 To guide the choice of distribution distance in DRBO (model selection
problem), we show that our approximation implicitly optimizes an
objective close to an interpretable risk-sensitive value.

1 Kirschner, J., Bogunovic, ., Jegelka, S., & Krause, A. (2020, June). Distributionally robust Bayesian optimization. In International Conference on

Artificial Intelligence and Statistics (pp. 2174-2184). PMLR. 24
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