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Motivation

• We have a decision variable 𝐱
(within our control, e.g., crop 
nutrients) and a context variable 𝐜
(uncontrollable, e.g., amount of 
sunlight in a day).
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Motivation

• We have a decision variable 𝐱
(within our control, e.g., crop 
nutrients) and a context variable 𝐜
(uncontrollable, e.g., amount of 
sunlight in a day).

• We desire large 𝑓(𝐱, 𝐜) (e.g., final 
size of crop). 𝑓 is unknown and 
costly to evaluate (in terms of 
time, money etc.).
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Stochastic BO

• The same idea applies if 𝐜 is a 
random vector distributed 
according to known distribution 𝐩. 
We may then desire to maximize 
the expected value 𝔼𝐜~𝐩[𝑓(𝐱, 𝐜)].
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Distributionally robust BO

• Suppose the environment is an 
adversary that is allowed to 
choose the true distribution among 
a set of distributions known as the 
uncertainty set 𝒰:

𝒰 ≔ 𝐪′ 𝑑 𝐩, 𝐪′ ≤ 𝜖}
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Distributionally robust BO

• Suppose the environment is an 
adversary that is allowed to 
choose the true distribution among 
a set of distributions known as the 
uncertainty set 𝒰:

𝒰 ≔ 𝐪′ 𝑑 𝐩, 𝐪′ ≤ 𝜖}

• In the worst case, it chooses the 
distribution that minimizes our 
expected value, called the worst-
case distribution 𝐪.
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Distributionally robust BO

• 𝔼𝐜~𝐩 𝑓 𝐱1, 𝐜 > 𝔼𝐜~𝐩 𝑓 𝐱2, 𝐜 , but 
min
𝐪∈𝒰

𝔼𝐜~𝐪 𝑓 𝐱1, 𝐜 < min
𝐪∈𝒰

𝔼𝐜~𝐪 𝑓 𝐱2, 𝐜 , 

i.e., 𝐱2 is more distributionally 
robust.
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Distributionally robust BO

• 𝔼𝐜~𝐩 𝑓 𝐱1, 𝐜 > 𝔼𝐜~𝐩 𝑓 𝐱2, 𝐜 , but 
min
𝐪∈𝒰

𝔼𝐜~𝐪 𝑓 𝐱1, 𝐜 < min
𝐪∈𝒰

𝔼𝐜~𝐪 𝑓 𝐱2, 𝐜 , 

i.e., 𝐱2 is more distributionally 
robust.

• The learner is required to learn the 
optimal distributionally robust 
point

𝒙∗ ≔ max
𝐱∈𝒳

min
𝐪∈𝒰

𝔼𝐜~𝐪 𝑓 𝐱, 𝐜 .
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General algorithm

• In Kirschner et al.1, 𝛼 = min
𝐪∈𝒰𝑡

𝔼𝐜~𝐪 ucbt 𝐱, 𝐜 which requires solving a convex optimization 

problem with a discretized context set 𝒞

• Solving general convex optimization problems with interior-point methods incurs 𝒪 𝒞 3

time. Scales poorly with 𝒞

9
1 Kirschner, J., Bogunovic, I., Jegelka, S., & Krause, A. (2020, June). Distributionally robust Bayesian optimization. In International Conference on 

Artificial Intelligence and Statistics (pp. 2174-2184). PMLR.



Approximating the convex opt. solution

• Define the worst-case expected value 𝑉 𝜖 ≔ min
𝐪∈𝒰

𝔼𝐜~𝐪 ucb 𝐱, 𝐜 .

• 𝑉 𝜖 is convex with respect to the margin 𝜖 (size of the uncertainty set 𝒰) when 𝑑
is convex
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Approximating the convex opt. solution

• Gotoh et al. (2020)1 defined the worst-case sensitivity 𝒮 as the gradient of 𝑉(𝜖)
as 𝜖 → 0, and derived closed forms of 𝒮 for many distribution distances.

• Since 𝑉(𝜖) is convex, we can lower bound 𝑉(𝜖) with its linear approximation 
around 𝜖 = 0 with the function 𝑊 𝜖 constructed using 𝒮.

1Gotoh, J., Kim, M. J., and Lim, A. E. B. Worst-case sensitivity. arXiv:2010.10794, 2020. 11
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Approximating the convex opt. solution

• However, the approximation 𝑊(𝜖) gets arbitrarily worse as 𝜖 increases. We can 
refine it further by computing (cheaply) 𝜖∗ and 𝑉 𝜖∗ (worst possible value of 
𝑉(𝜖)). By the convexity of 𝑉 𝜖 , we can then upper and lower bound 𝑉 𝜖 into a 
region termed the valid region.
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Approximating the convex opt. solution

• Our approximation titled MinimaxApprox is then a piece-wise linear 
bisection of the valid region. This minimizes the maximum possible 
approximation error incurred.
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Computational efficiency
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• Robust regret is bounded by

• Scales linearly in 𝑇, however so does the robust regret of the previous 
work in the same setting. Our approximation does no worse than the exact 
solution in terms of dependence on 𝑇.

• Confirms intuition that better approximation (𝐴𝑑,𝑡
max) ultimately leads to 

better robust regret.

Approximation quality
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Choice of distribution distance

• Worst-case sensitivity has interpretable meanings: for e.g., worst-case sensitivity when 𝑑
is 𝜒2-divergence is the variance of outcome values 𝐠, while that when using total variation 
(TV) is the range.

16



Choice of distribution distance

• Worst-case sensitivity has interpretable meanings: for e.g., worst-case sensitivity when 𝑑
is 𝜒2-divergence is the variance of outcome values 𝐠, while that when using total variation 
(TV) is the range.

• Denoting MinimaxApprox as ෠𝑉, in some regimes of 𝜖, ෠𝑉 can be re-written as a linear 
combination of the expected value, worst-case sensitivity, and the worst value. Presence 
of worst-case sensitivity term provides interpretability and guides choice of 𝑑.
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Experiments: Robust regret
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Synthetic random functions:

Plant maximum leaf area:

Comparing the robust regret of stochastic GP-UCB, 𝑾, Exact (previous work) and MinimaxApprox (ours)



Experiments: Robust regret
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Wind power dataset:

COVID-19 test allocation:

Comparing the robust regret of stochastic GP-UCB, 𝑾, Exact (previous work) and MinimaxApprox (ours)



Experiments: Computation time
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Experiments: Error-time trade-off
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Summary

• Distributionally robust Bayesian optimization (DRBO) is a novel setting for 
Bayesian optimization (BO) with stochastic context variables.
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Summary

• Distributionally robust Bayesian optimization (DRBO) is a novel setting for 
Bayesian optimization (BO) with stochastic context variables.

• We borrow a concept from the distributionally robust optimization (DRO) 
literature known as worst-case sensitivity to formulate a fast algorithm.
• Theoretical bounds 

• Empirically competitive with the previous method1 while incurring significantly less 
computation time

1 Kirschner, J., Bogunovic, I., Jegelka, S., & Krause, A. (2020, June). Distributionally robust Bayesian optimization. In International Conference on 
Artificial Intelligence and Statistics (pp. 2174-2184). PMLR.
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Summary

• Distributionally robust Bayesian optimization (DRBO) is a novel setting for 
Bayesian optimization (BO) with stochastic context variables.

• We borrow a concept from the distributionally robust optimization (DRO) 
literature known as worst-case sensitivity to formulate a fast algorithm.
• Theoretical bounds 

• Empirically competitive with the previous method1 while incurring significantly less 
computation time

• To guide the choice of distribution distance in DRBO (model selection 
problem), we show that our approximation implicitly optimizes an 
objective close to an interpretable risk-sensitive value.

1 Kirschner, J., Bogunovic, I., Jegelka, S., & Krause, A. (2020, June). Distributionally robust Bayesian optimization. In International Conference on 
Artificial Intelligence and Statistics (pp. 2174-2184). PMLR.
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Thank You
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