

Efficient Distributionally Robust Bayesian Optimization with Worst-case Sensitivity

*Sebastian Shenghong Tay^{1,2}, Chuan Sheng Foo², Daisuke Urano³, Richalynn Chiu
Xian Leong³, Bryan Kian Hsiang Low¹*

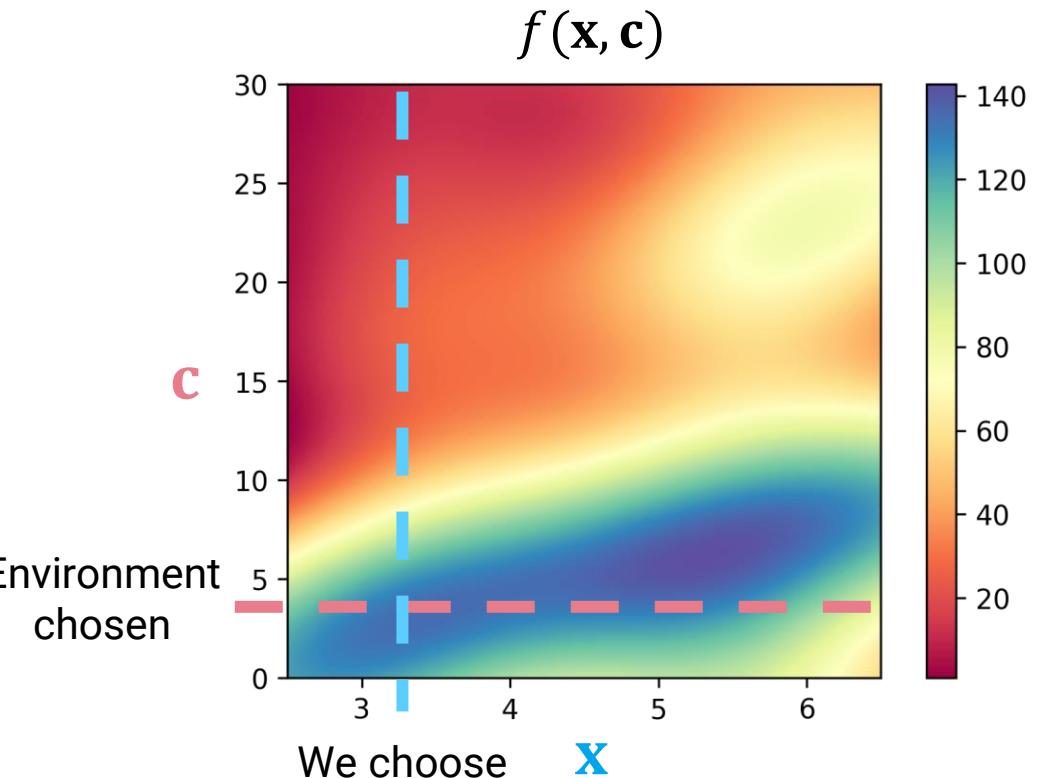
¹Department of Computer Science, National University of Singapore, Singapore

²Institute of Infocomm Research, A*STAR, Singapore

³Temasek Life Sciences Laboratory, Singapore

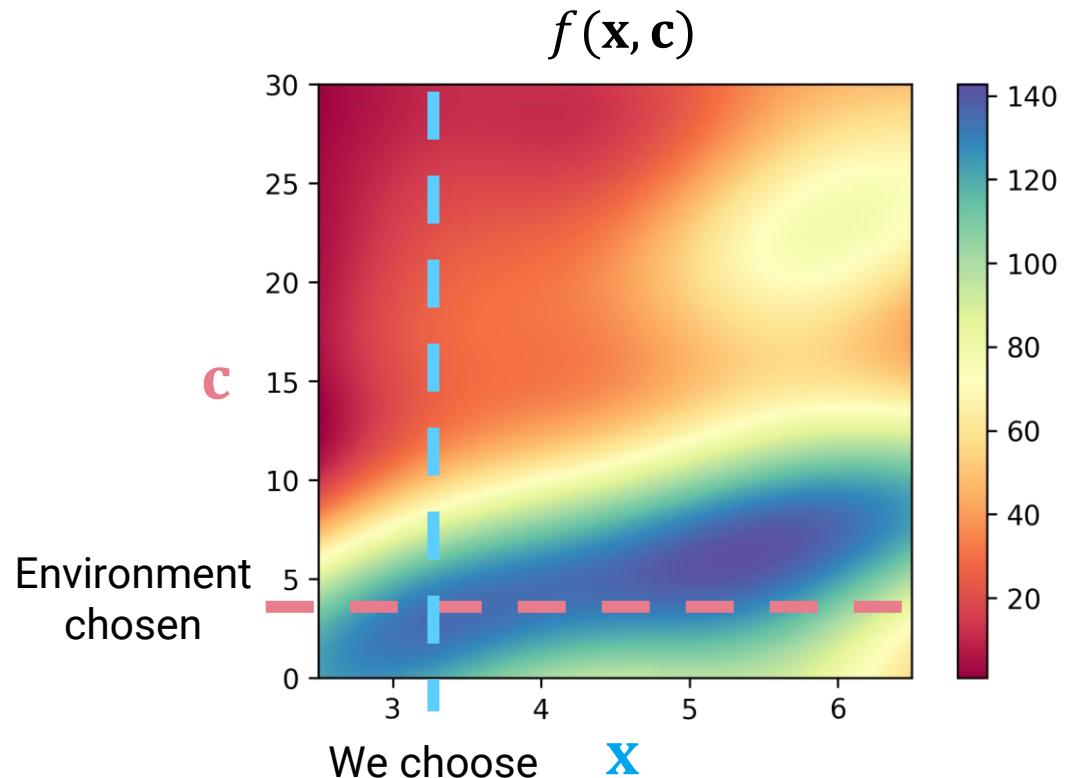
Motivation

- We have a **decision variable x** (within our control, e.g., crop nutrients) and a **context variable c** (uncontrollable, e.g., amount of sunlight in a day).



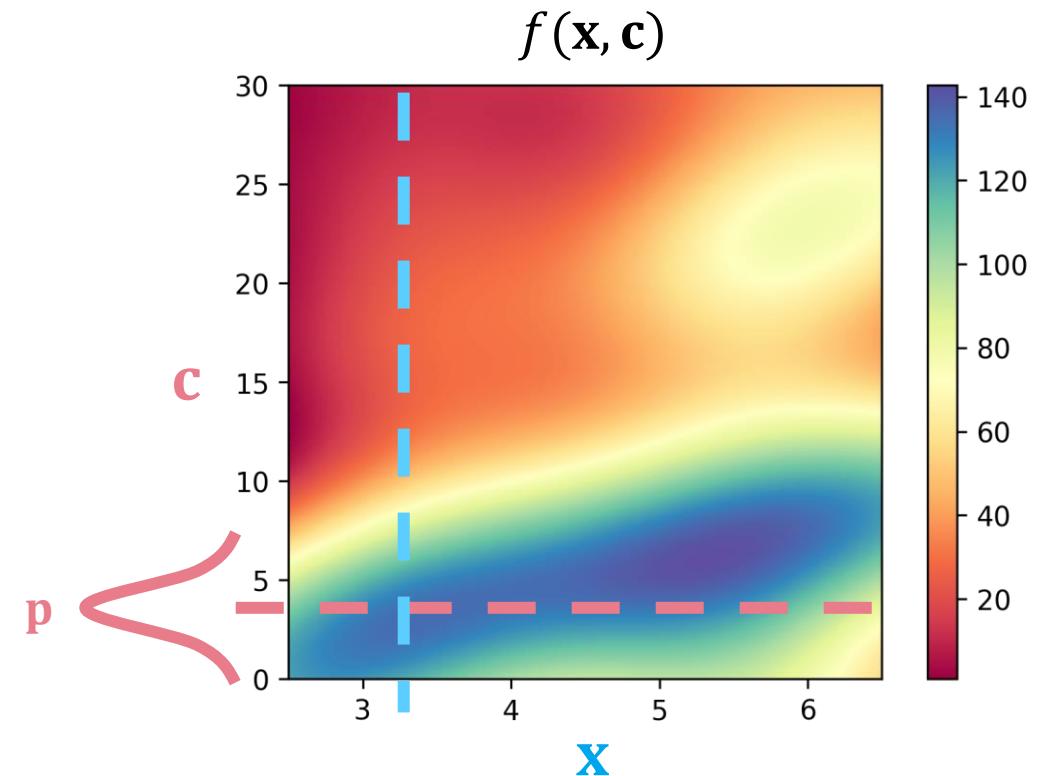
Motivation

- We have a **decision variable x** (within our control, e.g., crop nutrients) and a **context variable c** (uncontrollable, e.g., amount of sunlight in a day).
- We desire large $f(x, c)$ (e.g., final size of crop). f is **unknown** and **costly to evaluate** (in terms of time, money etc.).



Stochastic BO

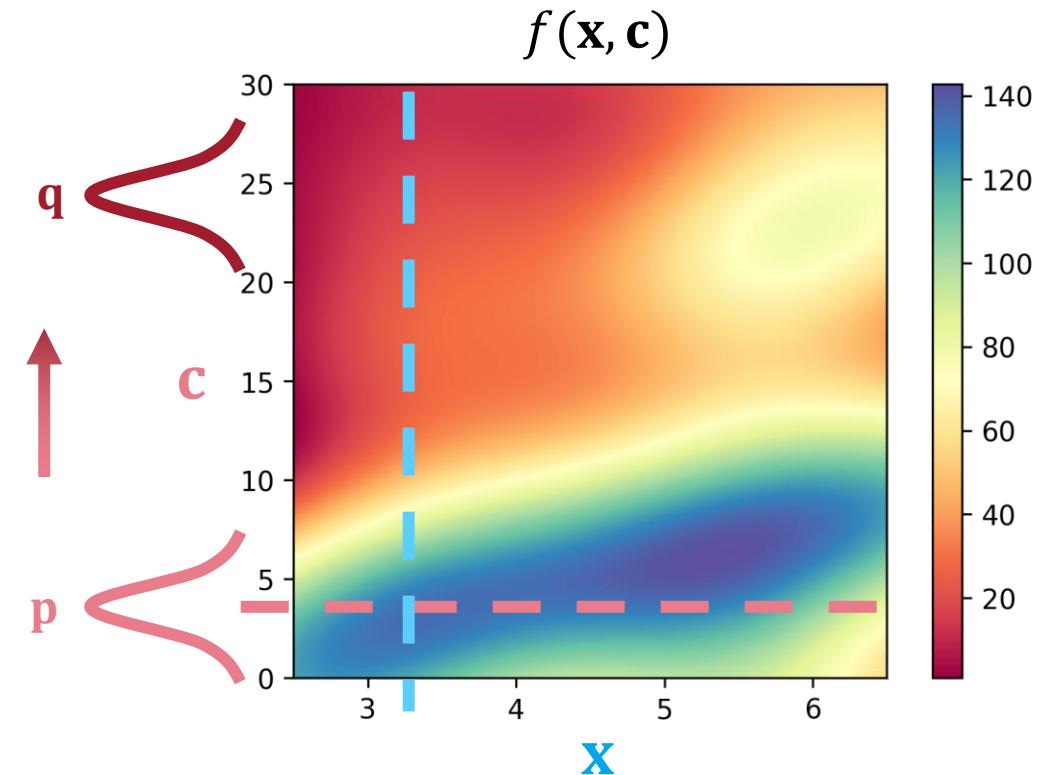
- The same idea applies if \mathbf{c} is a random vector distributed according to **known distribution p** . We may then desire to maximize the expected value $\mathbb{E}_{\mathbf{c} \sim p}[f(\mathbf{x}, \mathbf{c})]$.



Distributionally robust BO

- Suppose the environment is an adversary that is allowed to choose the true distribution among a set of distributions known as the uncertainty set \mathcal{U} :

$$\mathcal{U} := \{q' \mid d(p, q') \leq \epsilon\}$$

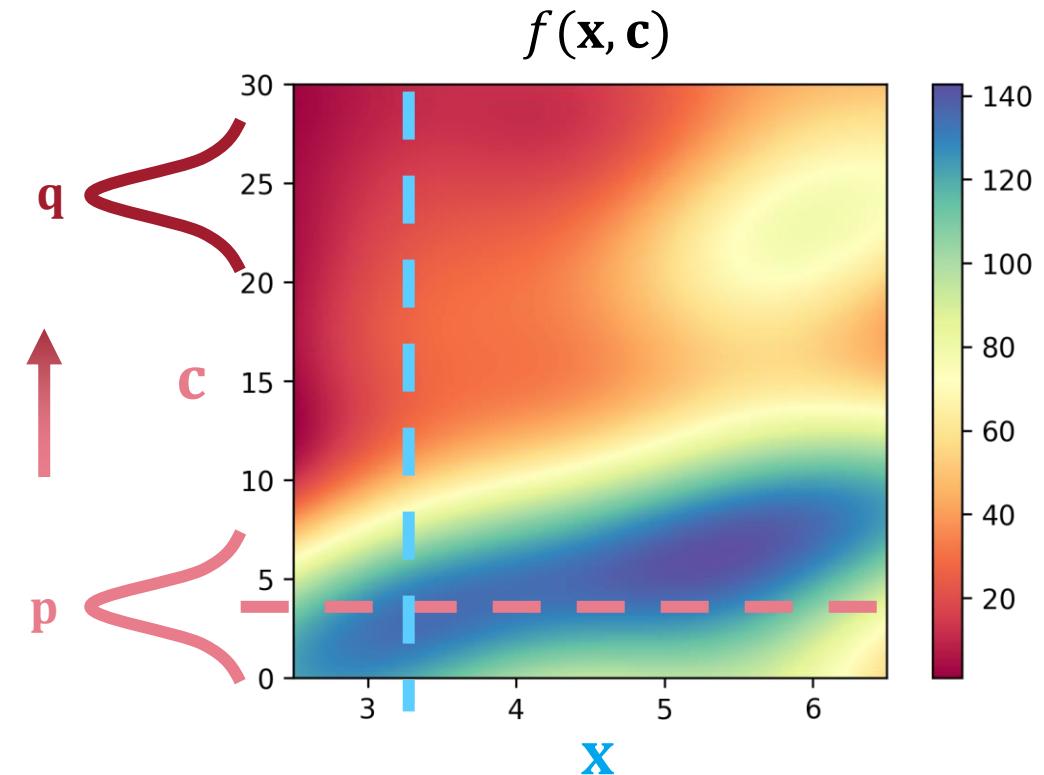


Distributionally robust BO

- Suppose the environment is an adversary that is allowed to choose the true distribution among a set of distributions known as the uncertainty set \mathcal{U} :

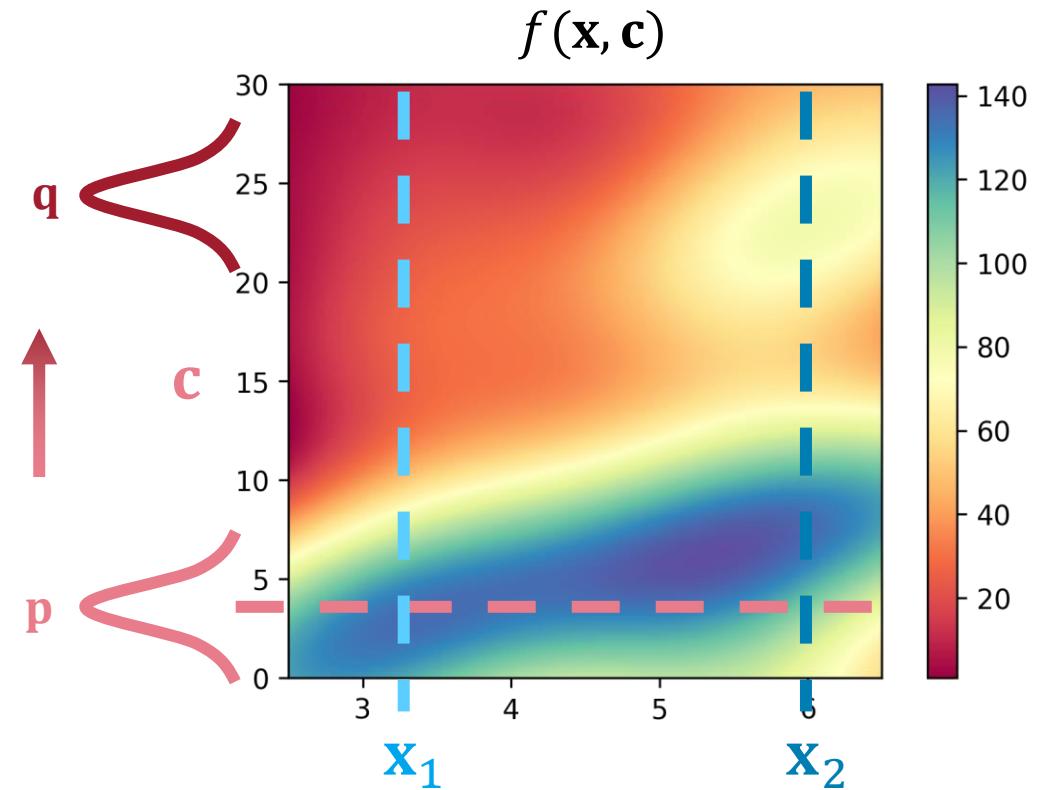
$$\mathcal{U} := \{q' \mid d(p, q') \leq \epsilon\}$$

- In the worst case, it chooses the distribution that minimizes our expected value, called the **worst-case distribution q** .



Distributionally robust BO

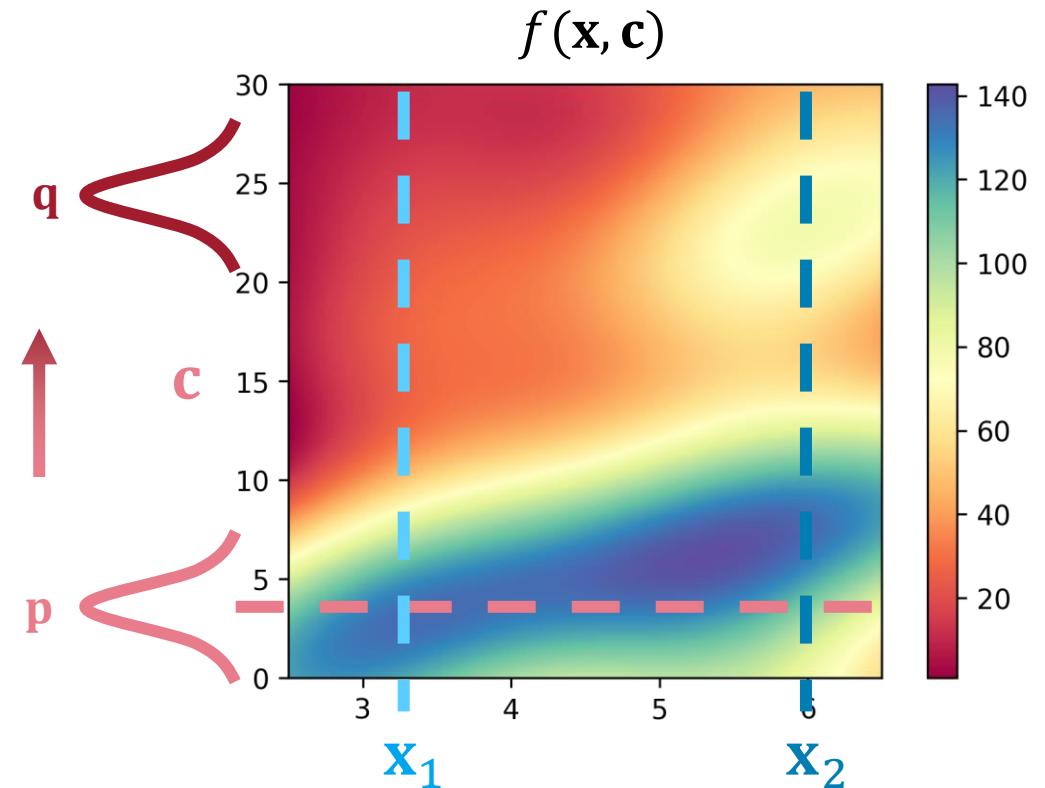
- $\mathbb{E}_{\mathbf{c} \sim \mathbf{p}}[f(\mathbf{x}_1, \mathbf{c})] > \mathbb{E}_{\mathbf{c} \sim \mathbf{p}}[f(\mathbf{x}_2, \mathbf{c})]$, but
 $\min_{\mathbf{q} \in \mathcal{U}} \mathbb{E}_{\mathbf{c} \sim \mathbf{q}}[f(\mathbf{x}_1, \mathbf{c})] < \min_{\mathbf{q} \in \mathcal{U}} \mathbb{E}_{\mathbf{c} \sim \mathbf{q}}[f(\mathbf{x}_2, \mathbf{c})]$,
i.e., \mathbf{x}_2 is more distributionally robust.



Distributionally robust BO

- $\mathbb{E}_{\mathbf{c} \sim \mathbf{p}}[f(\mathbf{x}_1, \mathbf{c})] > \mathbb{E}_{\mathbf{c} \sim \mathbf{p}}[f(\mathbf{x}_2, \mathbf{c})]$, but $\min_{\mathbf{q} \in \mathcal{U}} \mathbb{E}_{\mathbf{c} \sim \mathbf{q}}[f(\mathbf{x}_1, \mathbf{c})] < \min_{\mathbf{q} \in \mathcal{U}} \mathbb{E}_{\mathbf{c} \sim \mathbf{q}}[f(\mathbf{x}_2, \mathbf{c})]$, i.e., \mathbf{x}_2 is more distributionally robust.
- The learner is required to learn the optimal distributionally robust point

$$\mathbf{x}^* := \max_{\mathbf{x} \in \mathcal{X}} \min_{\mathbf{q} \in \mathcal{U}} \mathbb{E}_{\mathbf{c} \sim \mathbf{q}}[f(\mathbf{x}, \mathbf{c})].$$



General algorithm

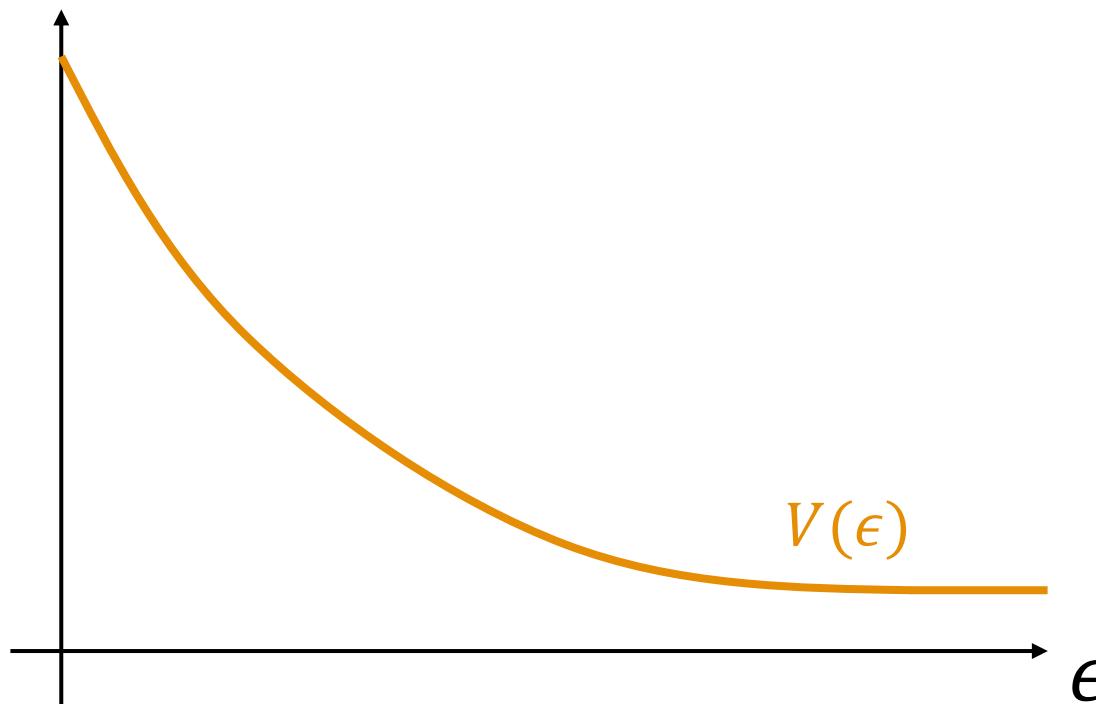
Algorithm 1 Generalized DRBO (Kirschner et al., 2020)

- 1: **Input:** GP with kernel k , score function α
- 2: **for** iteration $t = 1$ **to** T **do**
- 3: Obtain reference distribution p_t and margin ϵ_t
- 4: Compute $\text{ucb}_x^t := (\mu_t(x, \mathcal{C}_j) + \beta_t \sigma_t(x, \mathcal{C}_j))_{j=1, \dots, |\mathcal{C}|}^\top$
- 5: Select action $x_t = \text{argmax}_{x \in \mathcal{X}} \alpha(\text{ucb}_x^t, p_t, \epsilon_t)$
- 6: Observe $c_t \sim p_t^*$ and $y_t = f(x_t, c_t) + \xi_t$
- 7: Update GP posterior with $\mathcal{D}_{t+1} := \{(x_i, c_i, y_i)\}_{i=1}^t$
- 8: **end for**

- In Kirschner et al.¹, $\alpha = \min_{\mathbf{q} \in \mathcal{U}_t} \mathbb{E}_{\mathbf{c} \sim \mathbf{q}}[\text{ucb}^t(\mathbf{x}, \mathbf{c})]$ which requires solving a convex optimization problem with a discretized context set \mathcal{C}
- Solving general convex optimization problems with interior-point methods incurs $\mathcal{O}(|\mathcal{C}|^3)$ time. Scales poorly with $|\mathcal{C}|$

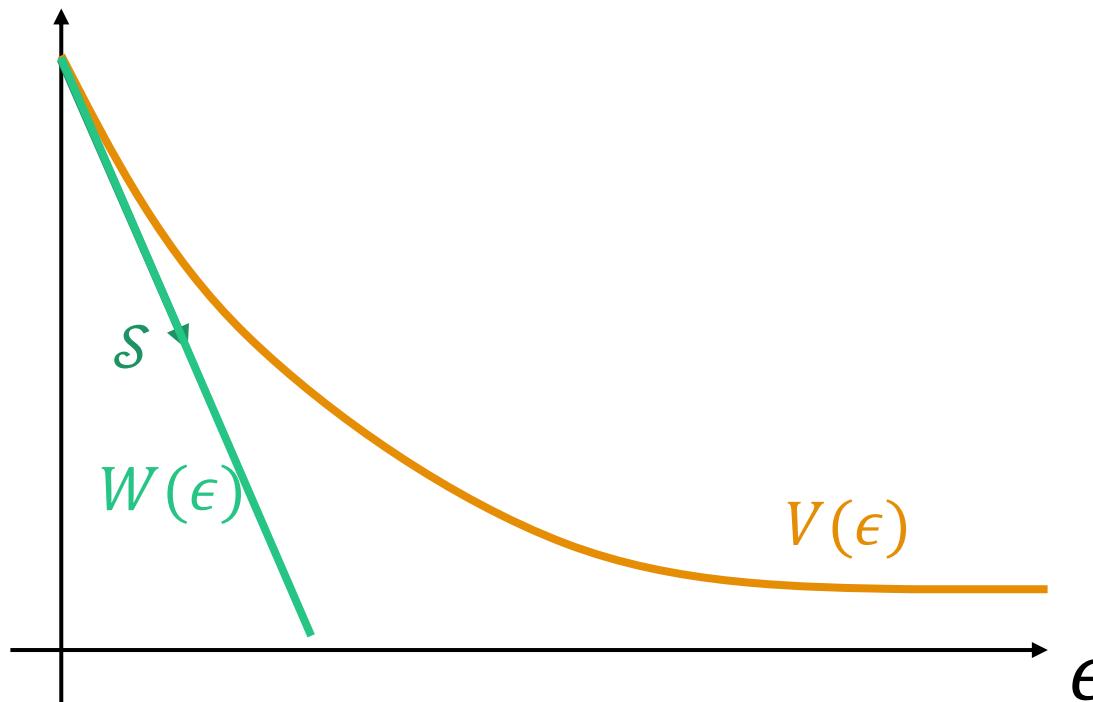
¹ Kirschner, J., Bogunovic, I., Jegelka, S., & Krause, A. (2020, June). Distributionally robust Bayesian optimization. In *International Conference on Artificial Intelligence and Statistics* (pp. 2174-2184). PMLR.

Approximating the convex opt. solution



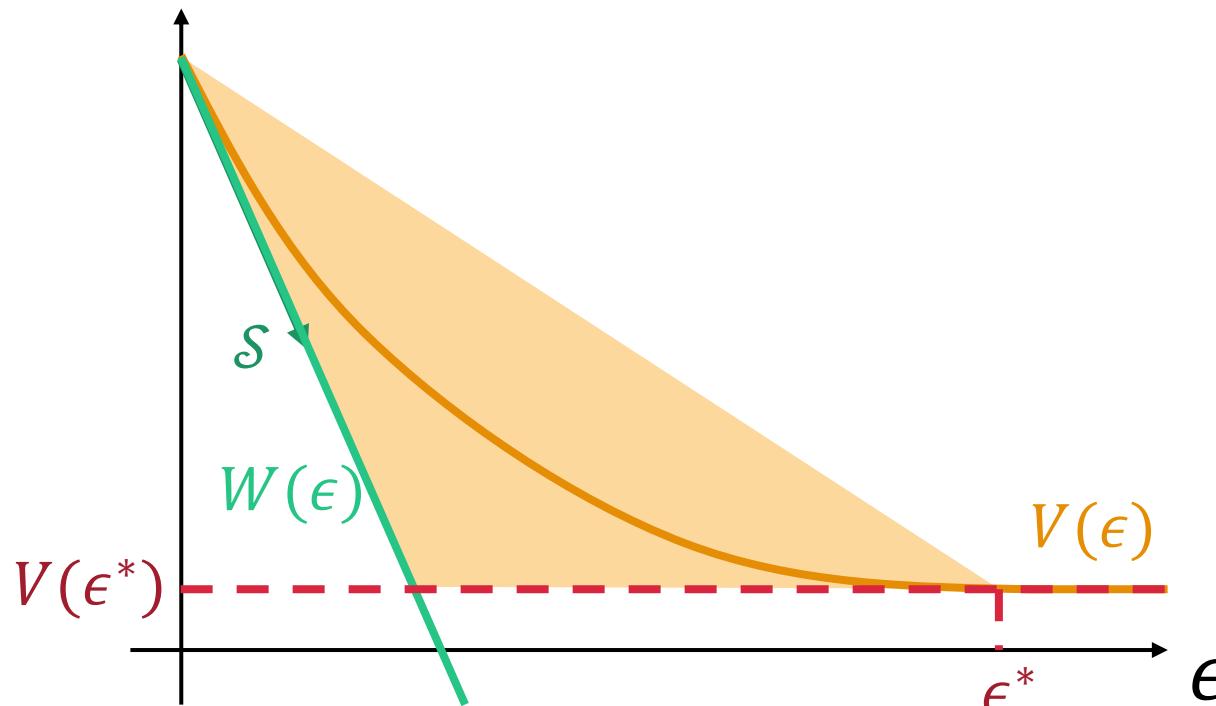
- Define the **worst-case expected value** $V(\epsilon) := \min_{\mathbf{q} \in \mathcal{U}} \mathbb{E}_{\mathbf{c} \sim \mathbf{q}}[\text{ucb}(\mathbf{x}, \mathbf{c})]$.
- $V(\epsilon)$ is convex with respect to the margin ϵ (size of the uncertainty set \mathcal{U}) when d is convex

Approximating the convex opt. solution



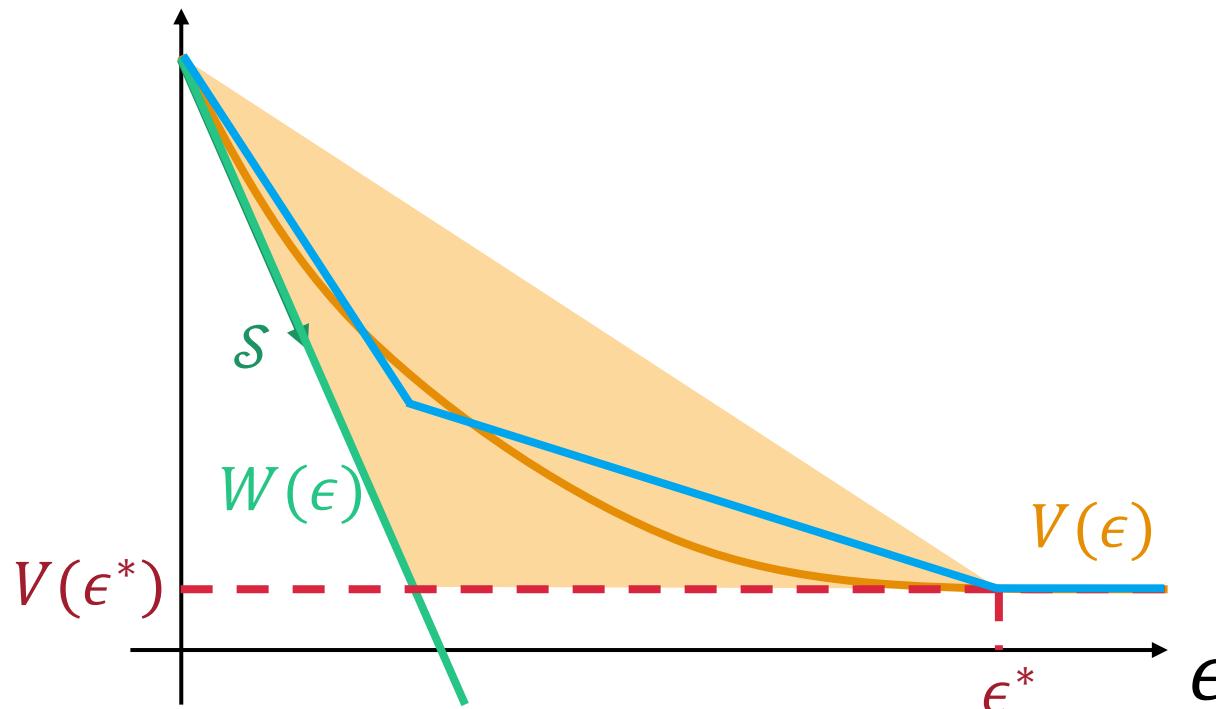
- Gotoh et al. (2020)¹ defined the **worst-case sensitivity** \mathcal{S} as the gradient of $V(\epsilon)$ as $\epsilon \rightarrow 0$, and derived closed forms of \mathcal{S} for many distribution distances.
- Since $V(\epsilon)$ is convex, we can lower bound $V(\epsilon)$ with its linear approximation around $\epsilon = 0$ with the function $W(\epsilon)$ constructed using \mathcal{S} .

Approximating the convex opt. solution



- However, the approximation $W(\epsilon)$ gets arbitrarily worse as ϵ increases. We can refine it further by computing (cheaply) ϵ^* and $V(\epsilon^*)$ (worst possible value of $V(\epsilon)$). By the convexity of $V(\epsilon)$, we can then upper and lower bound $V(\epsilon)$ into a region termed the **valid region**.

Approximating the convex opt. solution



- Our approximation titled **MinimaxApprox** is then a piece-wise linear bisection of the valid region. This minimizes the maximum possible approximation error incurred.

Computational efficiency

Table 1. Comparing time complexity of DRBO algorithms utilizing the **EXACT** worst-case expected value (Kirschner et al., 2020) vs. our fast approximation called **MINIMAXAPPROX** with various distribution distances d . The **EXACT** worst-case expected value is obtained by solving a general convex optimization problem with $|\mathcal{C}|$ variables using interior point methods which, we assume, incur $\mathcal{O}(|\mathcal{C}|^3)$ time.

Distribution distance d	EXACT	MINIMAXAPPROX
Maximum mean discrepancy (MMD)	$\mathcal{O}(\mathcal{C} ^3)$	$\mathcal{O}(\mathcal{C} ^2)$
Total variation (TV)	$\mathcal{O}(\mathcal{C} ^3)$	$\mathcal{O}(\mathcal{C})$
Modified χ^2 -divergence (χ^2)	$\mathcal{O}(\mathcal{C} ^3)$	$\mathcal{O}(\mathcal{C})$
Wasserstein metric (\mathcal{W})	$\mathcal{O}(\mathcal{C} ^6)$	$\mathcal{O}(\mathcal{C} ^2)$

Approximation quality

- Robust regret is bounded by

$$R_T \leq 4\beta_T \sqrt{T \left(\gamma_T + 4 \log \frac{12}{\delta} \right)} + \sum_{t=1}^T (2B'_{d,t} \epsilon_{d,t} + 2A_{d,t}^{\max})$$

- Scales linearly in T , however so does the robust regret of the previous work in the same setting. Our approximation does no worse than the exact solution in terms of dependence on T .
- Confirms intuition that better approximation ($A_{d,t}^{\max}$) ultimately leads to better robust regret.

Choice of distribution distance

- Worst-case sensitivity has interpretable meanings: for e.g., worst-case sensitivity when d is χ^2 -divergence is the **variance** of outcome values g , while that when using total variation (TV) is the **range**.

Choice of distribution distance

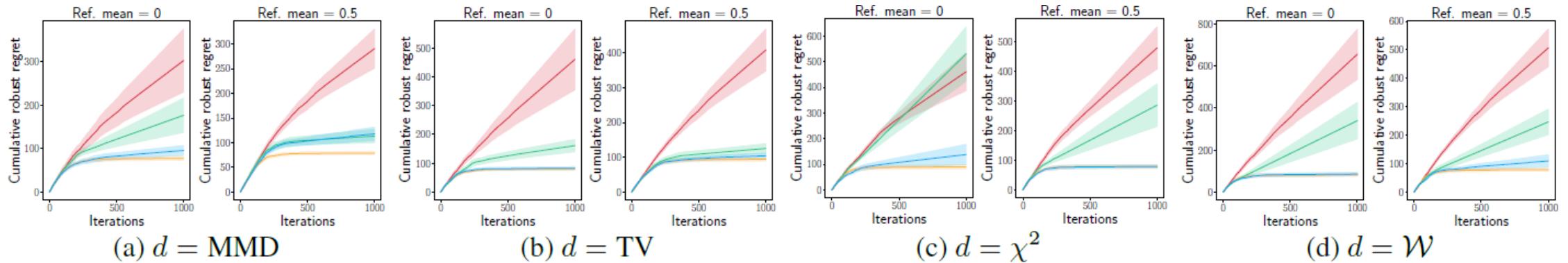
- Worst-case sensitivity has interpretable meanings: for e.g., worst-case sensitivity when d is χ^2 -divergence is the **variance** of outcome values g , while that when using total variation (TV) is the **range**.
- Denoting MinimaxApprox as \hat{V} , in some regimes of ϵ , \hat{V} can be re-written as a linear combination of the **expected value**, **worst-case sensitivity**, and the **worst value**. Presence of worst-case sensitivity term provides interpretability and guides choice of d .

$$\hat{V}_d(\epsilon_d, g) = \left(1 - \frac{\epsilon_d}{2\epsilon_d^*}\right) \underbrace{\mathbb{E}_p[g]}_{\text{Expected value}} + \frac{\epsilon_d}{2} \underbrace{\mathcal{S}_d(g)}_{\text{Worst-case sensitivity}} + \frac{\epsilon_d}{2\epsilon_d^*} \underbrace{\min_i[g]_i}_{\text{Worst value}}$$

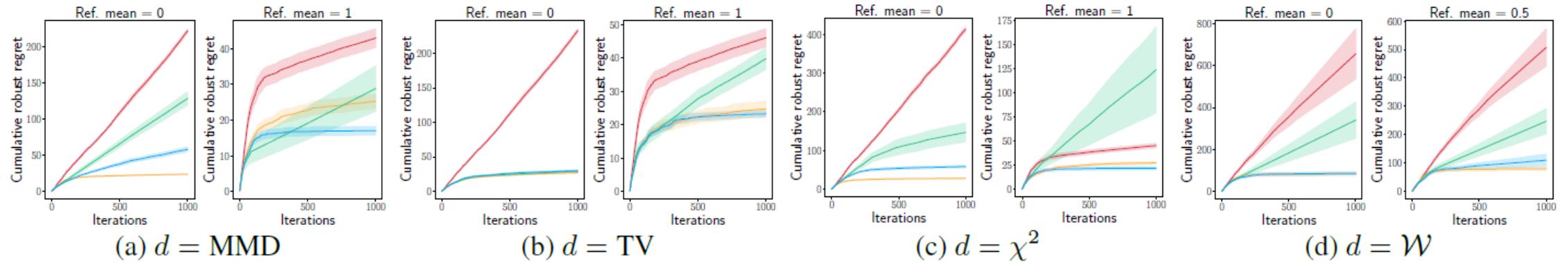
Experiments: Robust regret

Comparing the robust regret of **stochastic GP-UCB**, **W** , **Exact** (previous work) and **MinimaxApprox** (ours)

Synthetic random functions:



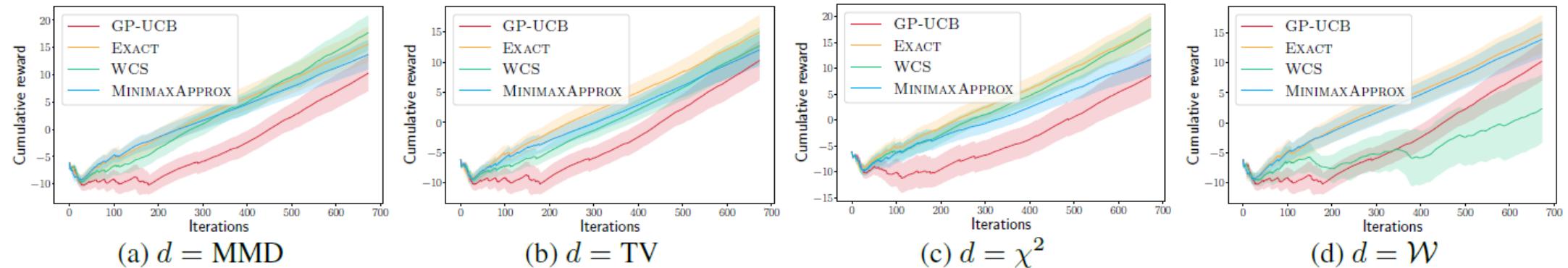
Plant maximum leaf area:



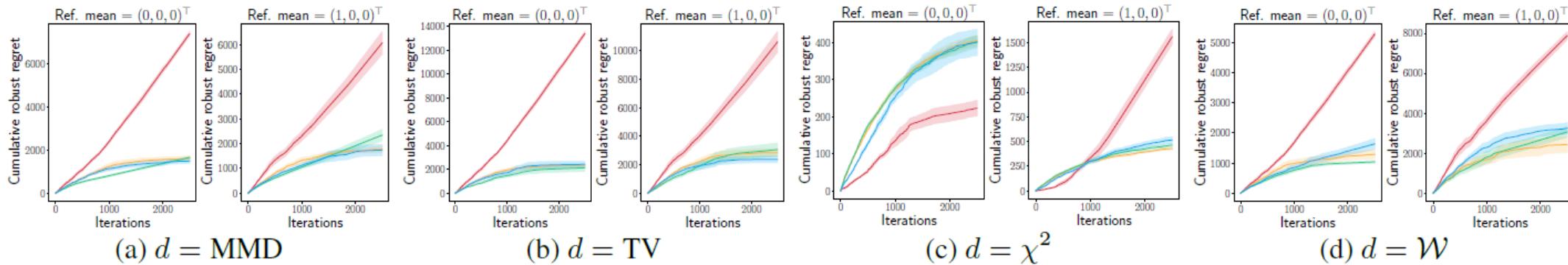
Experiments: Robust regret

Comparing the robust regret of **stochastic GP-UCB**, **W**, **Exact** (previous work) and **MinimaxApprox** (ours)

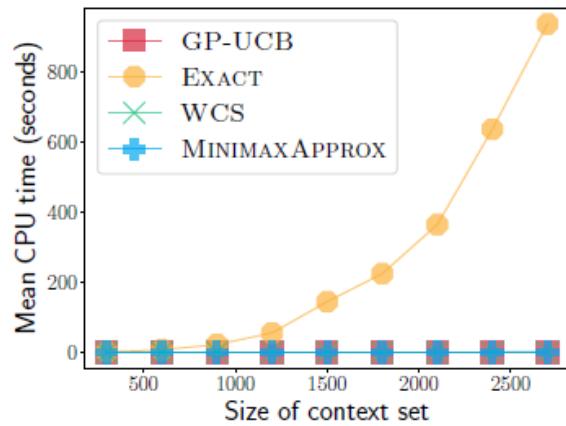
Wind power dataset:



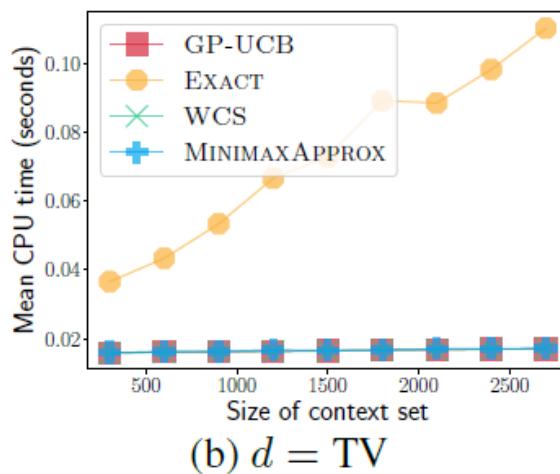
COVID-19 test allocation:



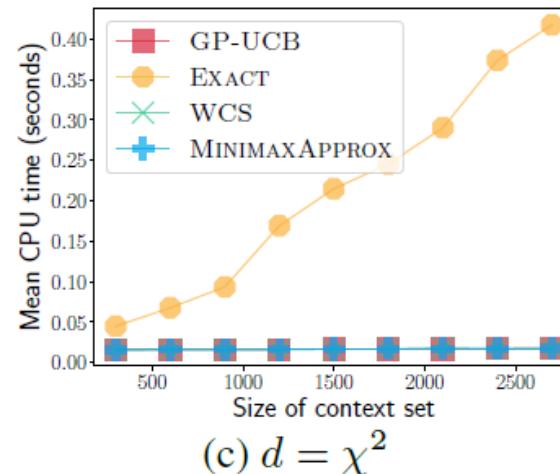
Experiments: Computation time



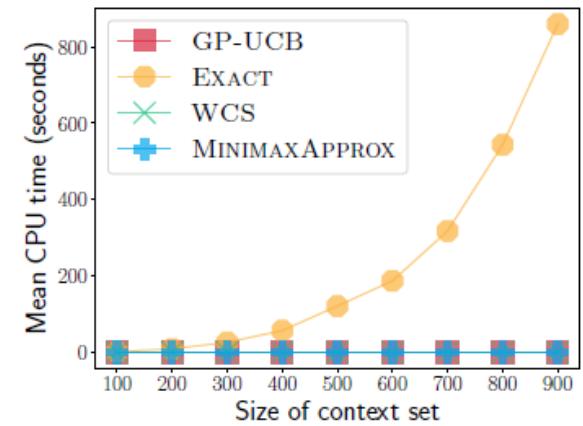
(a) $d = \text{MMD}$



(b) $d = \text{TV}$

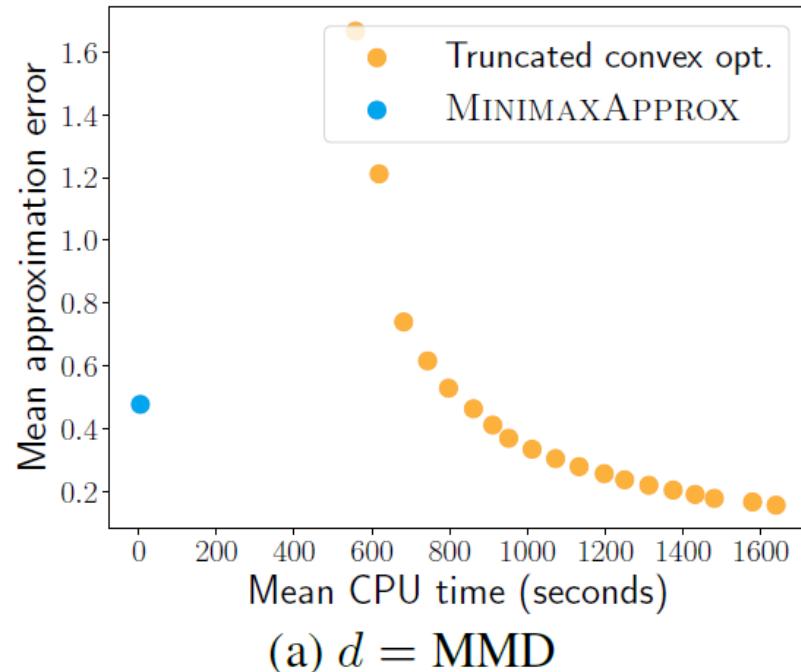


(c) $d = \chi^2$

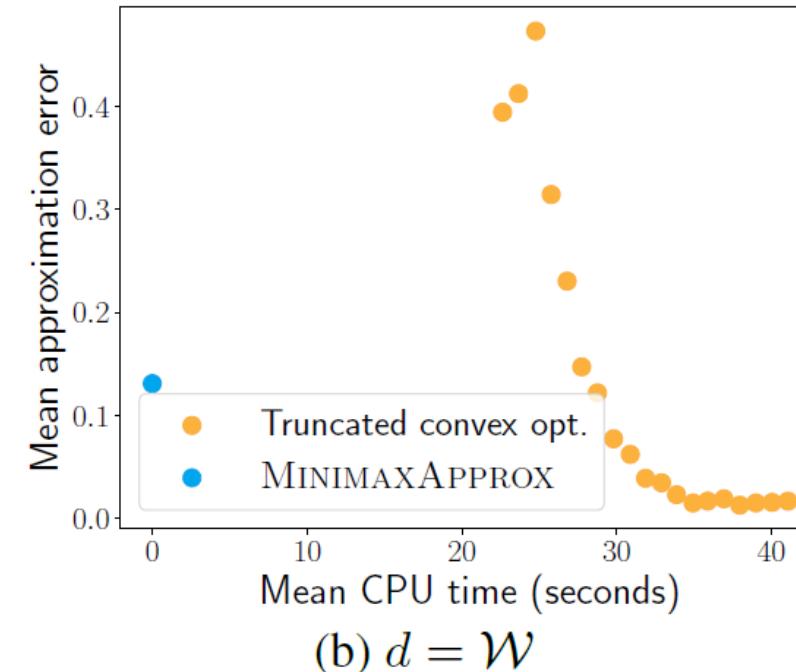


(d) $d = \mathcal{W}$

Experiments: Error-time trade-off



(a) $d = \text{MMD}$



(b) $d = \mathcal{W}$

|| Summary

- Distributionally robust Bayesian optimization (DRBO) is a novel setting for Bayesian optimization (BO) with stochastic context variables.

Summary

- Distributionally robust Bayesian optimization (DRBO) is a novel setting for Bayesian optimization (BO) with stochastic context variables.
- We borrow a concept from the distributionally robust optimization (DRO) literature known as **worst-case sensitivity** to formulate a fast algorithm.
 - Theoretical bounds
 - Empirically competitive with the previous method¹ while incurring **significantly less computation time**

¹ Kirschner, J., Bogunovic, I., Jegelka, S., & Krause, A. (2020, June). Distributionally robust Bayesian optimization. In *International Conference on Artificial Intelligence and Statistics* (pp. 2174-2184). PMLR.

Summary

- Distributionally robust Bayesian optimization (DRBO) is a novel setting for Bayesian optimization (BO) with stochastic context variables.
- We borrow a concept from the distributionally robust optimization (DRO) literature known as **worst-case sensitivity** to formulate a fast algorithm.
 - Theoretical bounds
 - Empirically competitive with the previous method¹ while incurring **significantly less computation time**
- To guide the choice of distribution distance in DRBO (model selection problem), we show that our approximation implicitly optimizes an objective close to an **interpretable risk-sensitive value**.

¹ Kirschner, J., Bogunovic, I., Jegelka, S., & Krause, A. (2020, June). Distributionally robust Bayesian optimization. In *International Conference on Artificial Intelligence and Statistics* (pp. 2174-2184). PMLR.

Thank You