
Flashlight: Enabling Innovation in
Tools for Machine Learning
Jacob Kahn1, Vineel Pratap1, Tatiana Likhomanenko2, Qiantong Xu3, Awni Hannun4, Jeff Cai5, Paden Tomasello1, Ann

Lee1, Edouard Grave1, Gilad Avidov1, Benoit Steiner1, Vitaliy Liptchinsky6, Gabriel Synnaeve1, Ronan Collobert2

1 — FAIR, Meta AI

2 — Apple

3 — Samba Nova Systems

4 — Zoom, Inc.

5 — Independent

6 — Paxos Trust Company

Presenter: Jacob Kahn <jacobkahn@fb.com>

ICML 2022 | Baltimore, Maryland

FAIR @

Enable fundamental research in ML computation via frameworks

with deeply-customizable internals.

GOAL

What is
Flashlight?

Variable cos(const Variable& input) {

 auto result = fl::cos(input.tensor()); // get a Tensor from a Variable

 // Called with backward() to compute gradients for this op's inputs

 auto gradFunc = [](std::vector<Variable>& inputs,

 const Variable& gradOutput) {

 inputs[0].addGrad(// Add a gradient to the input

 Variable(gradOutput * negate(sin(inputs[0].tensor())), false));

 };

 // Construct a Variable from a Tensor and a gradient-computing function

 return Variable(result, {input}, gradFunc);

}

Tape-based
Automatic

Differentiation

Sequential model;

model.add(View(fl::Shape({IM_DIM, IM_DIM, 1, -1})));

model.add(Conv2D(

 1 /* input channels */,

 32 /* output channels */,

 5 /* kernel width */,

 5 /* kernel height */,

 1 /* stride x */,

 1 /* stride y */,

 PaddingMode::SAME; /* padding mode */,

 PaddingMode::SAME; /* padding mode */));

model.add(ReLU());

Modules and
Models

Agenda Building small frameworks 

Powerful internal APIs

Simplicity = performance

Past and present applications
and directions

Why Flashlight?

01		 Building Small Frameworks

Compact Tools and Research

Having flexible tools enables challenging foundational assumptions in ML. Tools shape

our worldview. What affects tool flexibility?

• Framework complexity

• Internal API availability and size

• Compilation time

• Opinionated interfaces

01	 BUILDING SMALL FRAMEWORKS

Fast Compilation

As frameworks grow, compile times for incremental changes regress. This inhibits rapid

prototyping and iteration on computational research done inside frameworks.

01	 BUILDING SMALL FRAMEWORKS

120+
PyTorch — mean incremental
compile time, CPU minutes

01	 BUILDING SMALL FRAMEWORKS

Incremental compilation was benchmarked via recompilation after trivial
modifications to 100 random files in each framework. Only relevant subsystems
and common components were eligible. Stdev was under 5% of the mean.

350+
TensorFlow — mean incremental
compile time, CPU minutes

1
Flashlight — mean incremental
compile time, CPU minutes

Small Operator Sets

The proliferation of large operator sets makes foundational modifications to primitive

operations intractable. Using existing codebases with new computational techniques

can require significant, wide-ranging changes.

01	 BUILDING SMALL FRAMEWORKS

2100+
Operators in PyTorch

01	 BUILDING SMALL FRAMEWORKS

Source: framework-level operator schemas.

1400+
Operators in TensorFlow

50+
Operators in Flashlight

50+
PyTorch ops that implicitly
perform Tensor addition

01	 BUILDING SMALL FRAMEWORKS

Source: framework-level operator schemas.

20+
TensorFlow ops that implicitly
perform Tensor addition

1
Flashlight ops that implicitly
perform Tensor addition

02	 	 Powerful Internal APIs

A Small API
Surface for Tensor
Computation

Making changes to tensor internals

facilitates developing compilers, new

computation models, and general

optimizations in parallel computation.

Tensor backends supporting new hardware

or embedded systems can be easily added

adapted with no changes to model code.

02	 POWERFUL INTERNAL APIs

class MyTensorImpl : public TensorAdapter {

 // State information goes here (e.g. buffers, shape)

 public:

 // Metadata

 const Shape& shape() override;

 dtype type() override;

 // Ops on Tensors

 Tensor flatten() const override;

 // …

};

Define a TensorAdapter abstraction for tensor state:

A Small API
Surface for Tensor
Computation

Flashlight’s Tensor abstraction isn’t

opinionated to any particular computation

model — its single API accommodates eager,

lazy and static setups.

Tensor implementations can store arbitrary

state and can compose operations in

implementation-defined patterns.

02	 POWERFUL INTERNAL APIs

class MyTensorBackend : public TensorBackend {

 // State information goes here

 // (e.g. compute streams, compiler state)

 public:

 // Tensor operation primitives

 Tensor add(const Tensor& lhs, const Tensor& rhs) override;

 Tensor minimum(const Tensor& lhs, const Tensor& rhs) override;

 // ...

};

Define a TensorBackend abstraction for defining computations on tensors:

Full Control of
Memory
Management
Control how memory is managed on

accelerators via Flashlight’s ArrayFire tensor

backend and the corresponding internal API

for memory management.

This enables studying memory management

in isolation, without having to implement a

full tensor backend.

02	 POWERFUL INTERNAL APIs

class CachingMemoryManager : public MemoryManagerAdapter {

 // Store state as needed

 public:

 void* alloc(bool userLock, unsigned ndim,

 dim_t* dims, unsigned elSize) override;

 // free memory

 void unlock(void* ptr, bool userLock) override;

 // ...

};

03	 	 Simplicity = Performance

High-Performance Reference Implementations

Ensure that you’re bottlenecked by your new implementation, not by other framework

components that preclude isolating and studying computation.

03	 SIMPLICITY = PERFORMANCE

Framework Overhead Matters

03	 SIMPLICITY = PERFORMANCE
A PREPRINT - JUNE 28, 2022

5.1.2 Performance

Table 3: Performance on common state-of-the-art models across frameworks. Values are the number of seconds needed
to perform 100 iterations of the forward and backwards passes, with data loading (unless indicated). Number of
parameters are in millions. Framework labels: PT = PyTorch, TF = TensorFlow, and FL = Flashlight.

MODEL
1 GPU 8 GPUS

NUM. PARAMS (M) BATCH SIZE PT TF FL PT TF FL

ALEXNET 61 32 2.0 4.0 1.4 6.0 6.5 2.1
VGG16 138 32 14.8 12.6 13.2 16.3 17.9 14.9
RESNET-50 25 32 11.1 12.4 10.3 12.3 15.9 11.9
BERT-LIKE 406 128 19.6 19.8 17.5 22.7 23.6 19.2
ASR TR. 263 10 58.5 63.7 53.6 63.7 69.7 57.5
VIT 87 128 137.8 140.3 129.3 143.1 169.6 141.0

When improving framework components or modifying internals, framework overhead makes it difficult to disambiguate
performance changes due to in-flight modifications from existing bottlenecks or overhead due to other framework
components as discussed in Section 3. Table 3 compares the performance of Flashlight 0.3.1, PyTorch 1.8, TensorFlow
2.4 on six common large-scale deep neural networks. For each configuration, we benchmark 100 iterations of data
loading7, preprocessing, and forward/backward passes, with data-parallel gradient synchronization in distributed settings.
Benchmarks are performed on Intel E5-2698 CPUs with 512GB of RAM, and NVIDIA V100-32GB GPUs in a DGX-1
server. Inter-GPU interconnects in the 8 GPUs (1 node) setting are Nvidia NVLink-based. All models were warmed
up with 100 iterations of forward and backward passes. For consistency and reproducibility, no third-party libraries
are used to enhance performance beyond optimization tools already contained in frameworks (e.g. @tf.function
in TensorFlow). Flashlight is benchmarked as is with no optimizations. While orthogonal to the paper, Flashlight’s
default backend has empirically outperformed other frameworks due to the quality of the ArrayFire JIT, dataloading
performance, and low framework overhead.

Flashlight is competitive and can exceed the performance of other frameworks, especially on architectures which are
of lower arithmetic intensity and spend less compute time in vendor-optimized libraries, such as AlexNet. Given
strong performance with simple reference implementations that have undergone far less optimization than have large
frameworks, we see exciting potential for improvement with future research done in Flashlight.

5.2 Case Studies

Ongoing research efforts enabled by Flashlight include work in code generation, compilers and IRs, memory manage-
ment, and distributed computing. Below, we give examples of recent research made possible with Flashlight.

5.2.1 Optimizations on Large, Specialized Autograd Graphs

The ability to change the lightweight implementation of Flashlight’s tensor and automatic differentiation (autograd)
components via extensible APIs facilitated research in building a fully differentiable beam search decoder [Collobert
et al., 2019], which required operating on unconventional computation graphs not supported by other frameworks’
autograd systems. Other frameworks were unable to handle these autograd graphs for several reasons:

• Graphs contained millions of nodes/operations that created significant memory pressure;
• There existed only small operator overhead per autograd graph node (many addition and log operations);
• Graph operations had few opportunities for vectorization;
• Only sparse components of the graph were required.

Authors modified Flashlight’s autograd to support:

• On-the-fly graph pruning to take advantage of sparsity and reduce memory footprint;
• Dynamic, pre-fused gradient computation for common sequences of gradient computation operations;
• Custom autograd node lifetime for avoiding reference-counting overhead for graph mutations.

7To ensure fairness, due to Flashlight’s significantly better dataloading performance as to compared to other frameworks,
BERT-like models use random data in-memory; ViT models exclude data augmentation.

9

Average number of seconds to do 100 forward + backward iterations.

PT = PyTorch, TF = TensorFlow, FL = Flashlight

Random data is used for non-vision benchmarks to disambiguate data loading asymmetries.

Numbers gathered in NVIDIA 32GB V100 GPUs in DGX-1 systems with Intel E5-2698 CPUs with 512GB of RAM.

Be bottlenecked by what you’re building, not framework overhead.

04		 Past and present applications and directions

With complete control over tensor
memory management, current
research on top of Flashlight
optimizes tensor buffer placement
by optimizing memory schedules
of operator graphs.

04	 PAST AND PRESENT APPLICATIONS AND DIRECTIONS

Case Study: Generalized memory management

1

2

3

T1

T3

T2

ts1 ts2 ts3 ts4

Ops Run A Run B Run C

T1 Generate Preserve

T2 Generate Fetch Preserve

T3 Generate Preserve Preserve

Timesteps

PyTorch

1. Search operator

manifests for operators

that might do addition,

find stragglers, and

change all call sites.

2. Hope that existing

benchmarks don’t use

other specialized

operators.

04	 PAST AND PRESENT APPLICATIONS AND DIRECTIONS

TensorFlow

1. Go through hundreds

of operators that might

do tensor addition, and

change them.

2. Hope that existing

benchmarks don’t use

other specialized

operators.

Jax

1. Attempt to define an

operator then use it via

composition.

2. If your decomposition

isn’t usable with existing

models, make deep

modifications to XLA/

MLIR.

Flashlight

1. Modify the single

addition operator in a

tensor interface by

overriding a class or

changing code directly.

2. Profit!

Case Study: Swapping out element-wise addition

github.com/flashlight/flashlight

