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GOAL

Enable fundamental research in ML computation via frameworks

with deeply-customizable internals.



What is
Flashlight?

Tape-based
Automatic
Differentiation

Modules and
Models

Variable cos(const Variable& input) {
auto result = fl::cos(input.tensor()); // get a Tensor from a Variable
// Called with backward() to compute gradients for this op's 1inputs
auto gradFunc = [](std::vector<Variable>& 1inputs,
const Variable& gradOutput) {
inputs[0].addGrad( // Add a gradient to the 1input
Variable(gradOutput * negate(sin(inputs[0].tensor())), false));
T3
// Construct a Variable from a Tensor and a gradient-computing function
return Variable(result, {input}, gradFunc);

Sequential model;

model.add(View(fl::Shape({IM_DIM, IM_DIM, 1, -1})));
model.add (Conv2D(

1 /x input channels x*/,

32 /*x output channels */,

5 /* kernel width %/,

5 /x kernel height */,

1 /*x stride x %/,

1 /* stride y %/,

PaddingMode: :SAME; /* padding mode x/,

PaddingMode: :SAME; /x padding mode */));
model.add (ReLU()) ;
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Why Flashlight?

Building small frameworks

Powerful internal APlIs

Simplicity = performance

Past and present applications
and directions



01 Building Small Frameworks



01 BUILDING SMALL FRAMEWORKS

Compact Tools and Research

Having flexible tools enables challenging foundational assumptions in ML. Tools shape

our worldview. What affects tool flexibility?
- Framework complexity
- Internal APl availability and size

- Compilation time

- Opinionated interfaces



01 BUILDING SMALL FRAMEWORKS

Fast Compilation

As frameworks grow, compile times for incremental changes regress. This inhibits rapid

prototyping and iteration on computational research done inside frameworks.



01 BUILDING SMALL FRAMEWORKS

120+ 350+

PyTorch — mean incremental TensorFlow — mean incremental Flashlight — mean incremental
compile time, CPU minutes compile time, CPU minutes compile time, CPU minutes

Incremental compilation was benchmarked via recompilation after trivial
modifications to 100 random files in each framework. Only relevant subsystems
and common components were eligible. Stdev was under 5% of the mean.



01 BUILDING SMALL FRAMEWORKS

Small Operator Sets

The proliferation of large operator sets makes foundational modifications to primitive
operations intractable. Using existing codebases with new computational techniques

can require significant, wide-ranging changes.



01 BUILDING SMALL FRAMEWORKS

2100+ 1400+ 50+

Operators in PyTorch Operators in TensorFlow Operators in Flashlight

Source: framework-level operator schemas.



01 BUILDING SMALL FRAMEWORKS

50+

PyTorch ops that implicitly
perform Tensor addition

Source: framework-level operator schemas.

20+

TensorFlow ops that implicitly
perform Tensor addition

1

Flashlight ops that implicitly
perform Tensor addition



02 Powerful Internal APls



02 POWERFUL INTERNAL APIs

A Small API
Surface for Tensor
Computation

Making changes to tensor internals
facilitates developing compilers, new
computation models, and general

optimizations in parallel computation.

Tensor backends supporting new hardware
or embedded systems can be easily added
adapted with no changes to model code.

Define a TensorAdapter abstraction for tensor state:

class MyTensorImpl : public TensorAdapter {

// State information goes here (e.g. buffers, shape)

public:

s

// Metadata

const Shape& shape() override;
dtype type() override;

// Ops on Tensors

Tensor flatten() const override;

/] .



02 POWERFUL INTERNAL APIs

Define a TensorBackend abstraction for defining computations on tensors:
A Small API

class MyTensorBackend : public TensorBackend {

Surface fOr TenSOr // State information goes here

// (e.g. compute streams, compiler state)

Computation public:

// Tensor operation primitives
Tensor add(const Tensor& lhs, const Tensor& rhs) override;

Flashlight’s Tensor abstraction isn’t Tensor minimum(const Tensor& lhs, const Tensor& rhs) override;

opinionated to any particular computation ! /]
b

model — its single APl accommodates eager,

lazy and static setups.

Tensor implementations can store arbitrary
state and can compose operations in
implementation-defined patterns.



02 POWERFUL INTERNAL APIs

Full Control of

class CachingMemoryManager : public MemoryManagerAdapter {
Memory // Store state as needed

public:
Management voidx alloc(bool userLock, unsigned ndim,

dim_tx dims, unsigned elSize) override;
// free memory

Control how memory is managed on void unlock(voidx ptr, bool userlLock) override;
accelerators via Flashlight’s ArrayFire tensor /] ...
backend and the corresponding internal API Ik

for memory management.

This enables studying memory management
in isolation, without having to implement a

full tensor backend.
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03 SIMPLICITY = PERFORMANCE

High-Performance Reference Implementations

Ensure that you're bottlenecked by your new implementation, not by other framework

components that preclude isolating and studying computation.



03 SIMPLICITY = PERFORMANCE

Framework Overhead Matters

Be bottlenecked by what you’re building, not framework overhead.

MODEL 1 GPU 8 GPUS
NUM. PARAMS (M) BATCH SIZE PT TF FL PT TF FL
ALEXNET 32 2.0 4.0 1.4 6.0 6.5 2.1
VGG16 32 14.8 12.6 13.2 16.3 17.9 14.9
RESNET-50 32 11.1 12.4 10.3 12.3 15.9 11.9
BERT-LIKE 128 19.6 19.8 17.5 22.7 23.6 19.2
ASR TR. 10 58.5 63.7 53.6 63.7 69.7 57.5
VIT 128 137.8 140.3 129.3 143.1 169.6 141.0

Average number of seconds to do 100 forward + backward iterations.

PT = PyTorch, TF = TensorFlow, FL = Flashlight

Random data is used for non-vision benchmarks to disambiguate data loading asymmetries.
Numbers gathered in NVIDIA 32GB V100 GPUs in DGX-1 systems with Intel E5-2698 CPUs with 512GB of RAM.
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PAST AND PRESENT APPLICATIONS AND DIRECTIONS

Case Study: Generalized memory management

With complete control over tensor
memory management, current
research on top of Flashlight
optimizes tensor buffer placement
by optimizing memory schedules
of operator graphs.

T1

T3

Timesteps
ts1 ts2 ts3 ts4
Ops Run A Run B Run C
T1 Generate Preserve
Generate Preserve Preserve
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PAST AND PRESENT APPLICATIONS AND DIRECTIONS

Case Study: Swapping out element-wise addition

PyTorch

1. Search operator
manifests for operators
that might do addition,
find stragglers, and

change all call sites.

2. Hope that existing
benchmarks don’t use
other specialized
operators.

TensorFlow

1. Go through hundreds
of operators that might
do tensor addition, and

change them.

2. Hope that existing
benchmarks don’t use
other specialized

operators.

Jax

1. Attempt to define an
operator then use it via

composition.

2. If your decomposition
isn’t usable with existing
models, make deep
modifications to XLA/
MLIR.

Flashlight

1. Modify the single
addition operatorin a
tensor interface by
overriding a class or

changing code directly.

2. Profit!



github.com/flashlight/flashlight
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