

Forget-free Continual Learning with Winning Subnetworks

Haeyong Kang*¹, Rusty John Lloyd Mina*¹, Sultan Rizky Hikmawan Madjid¹, Jaehong Yoon¹ Mark Hasegawa-Johnson², Sung Ju Hwang¹³, Chang D. Yoo¹,

> In Session 3 Track 9 Tue July 19 @ Room 327 – 329

- ¹Korea Advanced Institute of Science and Technology (KAIST),
- ²University of Illinois at Urbana-Champaign
- ³AITRICS

Concept of Continual Learning (CL)

 Continual learning: a learning paradigm that allows the model to learn new tasks on sequence data.

Catastrophic Forgetting (CF)?

- Catastrophic Forgetting (CF): a degradation of performances on previous data.
- The Objective: To learn from the new incoming tasks while retaining knowledge.

Various Approaches for Solving Catastrophic Forgetting (CF)

Various approaches can be broadly categorized as follows:

Regularization-based methods

- **Some weights** are crucial for tasks.
- Preserve task weights

Low error for task B Low error for task A Low error for task A no penalty

Elastic Weight Consolidation (EWC)

Rehearsal-based methods

- Reinforces a model's knowledge by replaying samples.
- **Memory hungry** Performance scales up with number of samples.

Gradient Episodic Memory (GEM)

Architecture-based methods

- -Finds task-subnetworks (supermasks) from a dense network
- Model capacity scales up with number of tasks.

Supermasks in Superposition (SupSup)

How can we build a memory-efficient CL model?

Dense neural networks:

- Over-parameterized (Denil et al., 2013; Han et al., 2016; Li et al., 2016)
- Removing redundant weights can achieve on-par or even better performance than NNs.

(Denil et al.,2013)

(Han et al., 2016)

(Li et al., 2016)

Lottery Ticket Hypothesis (LTH) (Frankle & Carbin, 2019):

- **The existence of sparse subnetworks** that preserve the performance of a dense network.
- Searching for optimal winning tickets requires repetitive pruning and retraining.

(Frankle & Carbin, 2019)

Architecture-based Continual Learning

Fixed Backbone

- Piggyback (Mallya et al., 2018), and SupSup (Wortsman et al., 2020).
- Find the optimal binary mask on a fixed backbone network.

Biased Transfer

- PackNet (Mallya & Lazebnik, 2018) and CLNP (Golkar et al., 2019).
- Reuse all features and weights previous which causes biased transfer.

Selective Reuse Expansion beyond Dense Networks

-APD (Yoon et al., 2020) selectively reuse / update and dynamically expand the dense network.

Winning Sub-Network (WSN)

- Selectively reuse and dynamically expand subnetworks within a dense network.
- Green edges are reused weights.

Illustration of Winning Sub-Networks (WSN) for CL

An illustration of Winning Sub-Networks (WSN):

Architecture-based Continual Learning: WSN's Benefits

Our WSN's Benefits of reused weights for learning sequence tasks

(d) Selective Reuse Expansion within Network (Our WSN)

(+) Transfer Learning:

To reuse some of the weights from previously chosen weights

(+) Finetuning:

To select new weights from the set of not-yet-chosen weights

(+) Computation Efficiency:

With reused weights learned at t-1, WSN selects a few new weights for learning new task t and <u>learns faster than others</u>.

Winning Sub-Networks (WSN) Algorithm

Algorithm 1 Winning Subnetworks (WSN)

```
input \{\mathcal{D}_t\}_{t=1}^{\mathcal{T}}, model weights \boldsymbol{\theta}, score weights \mathbf{s}, binary mask \mathbf{M}_0 = \mathbf{0}^{|\boldsymbol{\theta}|}, layer-wise capacity c
```

- 1: Randomly initialize θ and s.
- 2: for task t = 1, ..., T do
- 3: **for** batch $\mathbf{b}_t \sim \mathcal{D}_t$ **do**
- 4: Obtain mask \mathbf{m}_t of the top-c% weights at each layer
- 5: Compute $\mathcal{L}\left(\boldsymbol{\theta}\odot\mathbf{m}_{t};\mathbf{b}_{t}\right)$
- 6: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} \eta \left(\frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}} \odot (\mathbf{1} \mathbf{M}_{t-1}) \right)$ > Weight update
- 7: $\mathbf{s} \leftarrow \mathbf{s} \eta(\frac{\partial \mathcal{L}}{\partial \mathbf{s}})$ \triangleright Weight score update
- 8: end for
- 9: $\mathbf{M}_t \leftarrow \mathbf{M}_{t-1} \vee \mathbf{m}_t$ > Accumulate binary mask
- 10: **end for**

Issues:

As the number of tasks increases,

→ the number of binary masks to save also increase

Huffman Encoding of Accumulated Integer Mask

- An acquired per task mask (subnetwork)

- STEP 1: Encoding bit stream masks into integer masks.

- STEP2: Convert the integer into ASCII code symbols

- STEP3: N-bit-wise Huffman coding

※ ASCII code symbol

DEC	ОСТ	HEX	BIN	Symbol
32	040	20	00100000	
33	041	21	00100001	!
34	042	22	00100010	"
35	043	23	00100011	#
36	044	24	00100100	\$
37	045	25	00100101	%
38	046	26	00100110	&

Experiments: Datasets with Task Info. and Architectures

Datasets	CL Task Information	Tasks / classes	Architectures
Permuted MNIST(PMNIST)	A variant of MNIST (LeCun, 1998) where each task has a deterministic permutation to the input image pixels.	10 / 10	Two-layered MLP with 100- 100 neurons
5-Datasets	A mixture of 5 different vision datasets (Saha et al., 2021): CIFAR-10 (Krizhevsky, 2009), MNIST (LeCun, 1998), SVHN (Netzer et al., 2011), FashionMNIST (Xiao et al., 2017), and notMNIST (Bulatov, 2011).	5 / 10	Reduced ResNet18
Omniglot Rotation	An OCR images datasets, composed of 100 tasks as of each includes 12 classes. We further preprocess and the raw images by generating their rotated version in 90° , 180° , and 270° , followed by Yoon et al. (2020).	100 / 12	LeNet with 64-128-2500-1500 neurons
CIFAR-100 Split	A visual object dataset, constructed by randomly dividing 100 classes of CIFAR-100 into 10 tasks with 10 classes per task.	10 / 10	AlexNet
CIFAR-100 Superclass	We follow the setting from Yoon et al. (2020) that divides CIFAR-100 dataset into 20 tasks according to the 20 superclasses, and each superclass contains 5 different but semantically related classes.	20 / 20	LeNet with 64-128-2500-1500 neurons
TinylmageNet	A variant of ImageNet (Krizhevsky et al., 2012) containing 40 of 5-way classification tasks with the image sized by 64 \times 64 \times 3.	40 / 5	4 Conv layers and 3 Fully connected layers

Baselines

Baselines	Information
STL	Single-task learning, not a CL method
FINETUNE	Naïve sequential training
EWC	Regularization-based methods
HAT	Regularization-based methods
GPM	Rehearsal-based methods
FS-DGPM	Rehearsal-based methods
PackNet	Architecture-based methods
SupSup	Architecture-based methods
Multitask	Trains on multiple tasks simultaneously, not a CL method

Baselines: PackNet, SupSup, and WSN (ours)

PackNet

- Reused all weights
- Select weights on the absolute of mask values.

SupSup

- Each weight score (subnetwork) for each task

→ U-AIM

WSN (ours)

- Selective reused weights
- Single weight score

Performance comparisons of WSN and Baselines (1)

Table 1. Performance comparison of the WSN and baselines on various benchmark datasets.

- Accuracy (ACC),
- Average capacity (CAP),
- Average backward transfer (BWT)

Values with † and * denote reported performances from (Saha et al., 2021) and (Yoon et al., 2020).

Method	Permuted MNIST			5 Datasets			Omniglot Rotation		
	ACC (%)	CAP (%)	BWT	ACC (%)	CAP (%)	BWT	ACC (%)	CAP (%)	BWT
STL	97.37 (\pm 0.01)	1,000.0	-	$93.44~(\pm~0.12)$	500.0	-	$82.13~(\pm~0.08)^*$	10,000.0	-
FINETUNE	$78.22 (\pm 0.84)$	100.0	$-0.21 \ (\pm \ 0.01)$	$80.06 (\pm 0.74)$	100.0	$-0.17 (\pm 0.01)$	44.48 (± 1.68)	100.0	$-0.45~(\pm~0.02)$
EWC (Kirkpatrick et al., 2017)	$92.01 (\pm 0.56)$	100.0	$-0.03 \ (\pm \ 0.00)$	$88.64 (\pm 0.26)^{\dagger}$	100.0^{\dagger}	$-0.04 (\pm 0.01)^{\dagger}$	68.66 (± 1.92)*	100.0*	-
HAT (Serrà et al., 2018)	-	-	-	$91.32 (\pm 0.18)^{\dagger}$	100.0^{\dagger}	$-0.03 \ (\pm \ 0.00)^{\dagger}$	-	-	-
GPM (Saha et al., 2021)	$94.96 (\pm 0.07)$	100.0	$-0.02 (\pm 0.01)$	$91.22 (\pm 0.20)^{\dagger}$	100.0	$-0.01 \ (\pm \ 0.00)^{\dagger}$	$85.24 (\pm 0.37)$	100.0	$-0.01 \ (\pm \ 0.00)$
PackNet (Mallya & Lazebnik, 2018)	96.37 (± 0.04)	96.38	0.0	92.81 (± 0.12)	82.86	0.0	30.70 (± 1.50)	399.2	0.0
SupSup (Wortsman et al., 2020)	$96.31 (\pm 0.09)$	$122.89 \ (\pm \ 0.07)$	0.0	$93.28 (\pm 0.21)$	$104.27 \ (\pm \ 0.21)$	0.0	$58.14 (\pm 2.42)$	$407.12 \ (\pm \ 0.17)$	0.0
WSN, $c = 0.03$	94.84 (± 0.11)	19.87 (± 0.16)	0.0	90.57 (± 0.65)	12.11 (± 0.06)	0.0	80.68 (± 2.60)	75.87 (± 1.24)	0.0
WSN, $c = 0.05$	$95.65 (\pm 0.03)$	$26.49 (\pm 0.16)$	0.0	$91.61 (\pm 0.21)$	$17.26 (\pm 0.25)$	0.0	87.28 (\pm 0.72)	$79.85 (\pm 1.19)$	0.0
WSN, $c = 0.1$	$96.14 (\pm 0.03)$	$40.41 (\pm 0.54)$	0.0	$92.67 (\pm 0.12)$	$28.01 (\pm 0.28)$	0.0	83.10 (± 1.56)	$83.08 (\pm 1.61)$	0.0
WSN, $c = 0.3$	96.41 (± 0.07)	$77.73 (\pm 0.36)$	0.0	$93.22 (\pm 0.32)$	$62.30 (\pm 0.69)$	0.0	$81.89 (\pm 1.15)$	$102.2 (\pm 0.89)$	0.0
WSN, $c = 0.5$	$96.24 (\pm 0.11)$	$98.10 (\pm 0.25)$	0.0	93.41 (\pm 0.13)	$86.10 (\pm 0.57)$	0.0	$79.80 (\pm 2.16)$	$121.2 (\pm 0.50)$	0.0
MTL	$96.70~(\pm~0.02)^{\dagger}$	100.0	-	$91.54~(\pm~0.28)^{\dagger}$	100.0	-	81.23 (± 0.52)	100.0	-

Performance comparisons of WSN and Baselines (2)

Table 2. **Performance comparisons of the WSN and other state-of-the-art** including baselines:

- Average accuracy (ACC)
- Average capacity (CAP),
- Average backward transfer (BWT)

† denotes results reported from Deng et al. (2021).

Method	CIFAR-100 Split			CIFAR-100 Superclass			TinyImageNet		
	ACC (%)	CAP (%)	BWT (%)	ACC (%)	CAP (%)	BWT (%)	ACC (%)	CAP (%)	BWT (%)
EWC (Kirkpatrick et al., 2017)	$72.77 (\pm 0.45)^{\dagger}$	100.0	$-3.59 (\pm 0.55)^{\dagger}$	$50.26 (\pm 1.48)^{\dagger}$	100.0	$-7.87 (\pm 1.63)^{\dagger}$		-	
GEM (Lopez-Paz & Ranzato, 2017)	$70.15 (\pm 0.34)^{\dagger}$	100.0	$-8.61 (\pm 0.42)^{\dagger}$	$50.35 (\pm 0.80)^{\dagger}$	100.0	$-9.50 (\pm 0.85)^{\dagger}$	$50.57 (\pm 0.61)^*$	100.0	$-20.50 (\pm 0.10)^*$
ICARL (Rebuffi et al., 2017)	$53.50 (\pm 0.81)^{\dagger}$	100.0	$-20.44 (\pm 0.82)^{\dagger}$	$49.05 (\pm 0.51)^{\dagger}$	100.0	$-11.24 (\pm 0.27)^{\dagger}$	54.77 (± 0.32)*	100.0	$-3.93 (\pm 0.55)^*$
ER (Chaudhry et al., 2019b)	$70.07 (\pm 0.35)^{\dagger}$	100.0	$-7.70 (\pm 0.59)^{\dagger}$	$51.64 (\pm 1.09)^{\dagger}$	100.0	$-7.86 (\pm 0.89)^{\dagger}$	48.32 (± 1.51)*	100.0	$-19.86 (\pm 0.70)^*$
La-MaML (Gupta et al., 2020)	$71.37 (\pm 0.67)^{\dagger}$	100.0	$-5.39 (\pm 0.53)^{\dagger}$	$54.44 (\pm 1.36)^{\dagger}$	100.0	$-6.65 (\pm 0.85)^{\dagger}$	$66.90 (\pm 1.65)^{\dagger}$	100.0	$-9.13 (\pm 0.90)^{\dagger}$
GPM (Saha et al., 2021)	$73.18 (\pm 0.52)^{\dagger}$	100.0	$-1.17 (\pm 0.27)^{\dagger}$	$57.33 (\pm 0.37)^{\dagger}$	100.0	$-0.37 (\pm 0.12)^{\dagger}$	$67.39 (\pm 0.47)^{\dagger}$	100.0	$1.45 (\pm 0.22)^{\dagger}$
FS-DGPM (Deng et al., 2021)	$74.33~(\pm~0.31)^\dagger$	100.0	$-2.71 \ (\pm \ 0.17)^{\dagger}$	$58.81 (\pm 0.34)^{\dagger}$	100.0	$-2.97 (\pm 0.35)^{\dagger}$	$70.41 \ (\pm \ 1.30)^{\dagger}$	100.0	$-2.11 (\pm 0.84)^{\dagger}$
PackNet (Mallya & Lazebnik, 2018)	$72.39 (\pm 0.37)$	$96.38 (\pm 0.00)$	0.0	$58.78 (\pm 0.52)$	$126.65 (\pm 0.00)$	0.0	55.46 (± 1.22)	188.67 (± 0.00)	0.0
SupSup (Wortsman et al., 2020)	$75.47 (\pm 0.30)$	$129.00 (\pm 0.03)$	0.0	$61.70 (\pm 0.31)$	$162.49 \ (\pm \ 0.00)$	0.0	$59.60 (\pm 1.05)$	$214.52 (\pm 0.89)$	0.0
WSN, $c = 0.03$	$70.65 (\pm 0.36)$	$18.56 (\pm 0.25)$	0.0	54.99 (± 0.71)	22.30 (± 0.22)	0.0	68.72 (± 1.63)	$37.19 (\pm 0.21)$	0.0
WSN, $c = 0.05$	$72.44 (\pm 0.27)$	$25.09 (\pm 0.42)$	0.0	$57.99 (\pm 1.34)$	$27.37 (\pm 0.33)$	0.0	$71.22 (\pm 0.94)$	$41.98 (\pm 0.52)$	0.0
WSN, $c = 0.1$	$74.55 (\pm 0.47)$	$39.87 (\pm 0.62)$	0.0	$60.45 (\pm 0.37)$	$38.55 (\pm 0.20)$	0.0	71.96 (\pm 1.41)	$48.65 (\pm 3.03)$	0.0
WSN, $c = 0.3$	$75.98 (\pm 0.68)$	$80.26 (\pm 1.53)$	0.0	$61.47 (\pm 0.30)$	$63.47 (\pm 1.33)$	0.0	$70.92 (\pm 1.37)$	$73.44 (\pm 2.35)$	0.0
WSN, $c = 0.5$	76.38 (± 0.34)	99.13 (\pm 0.48)	0.0	61.79 (± 0.23)	$80.93 (\pm 1.58)$	0.0	$69.06 (\pm 0.82)$	$92.03 (\pm 1.80)$	0.0
Multitask	$79.75~(\pm~0.38)^{\dagger}$	100.0	-	$61.00 (\pm 0.20)^{\dagger}$	100.0	-	$77.10 \ (\pm \ 1.06)^{\dagger}$	100.0	0.5

Huffman Encoder Compression Rate & Progressive Capacities

(c) Progressive Capacities of Models

Performances and Compressed Capacities - Sequence of TinylmageNet Dataset Experiments.

- (a) The c = 0.1 shows generalized performances over others.
- (b) With fixed c = 0.1, the bit-wise Huffman compression rate.
- (c) The model capacity with the model capacity + the compressed binary masks over varying bits.
- → Within the 40-tasks, the 7-bits compressed capacities are the least increasing along with the c = 0.1 model capacity.

Catastrophic Forgetting From WSN's Viewpoint (1)

A Dense Network

- All used weights represents all activated sets of weights up to task t − 1.
- Per task represents an activated set of weights at task t.
- Reused per task represents an intersection set of weights per task and reused weights.
- New per task = Per task reused per task
 represents a new activated set of weights at task t.
- Reused for all tasks represents an intersection set of weights reused from task 1 up to task t.

Catastrophic Forgetting From WSN's Viewpoint (2)

Figure 5. Layer-wise Analysis on TinylmageNet Dataset Experiments:

- (a) Weights reusability within a dense network,
- (b) Capacities except to binary maps are determined by c = 0.1,
- (c) The most significant forgetting occurs from weights without reused per task
- (d) Performance drops significantly at Conv1 layer.

Conclusions

- Winning SubNetworks sequentially learns and selects an optimal subnetwork for each task.
- Specifically, WSN jointly learns the model weights and task-adaptive binary masks, attempting to select a small set of weights to be activated (winning ticket) by reusing weights.
- The proposed method is inherently **immune to catastrophic forgetting**.
- Binary masks were compressed using Huffman coding for a sub-linear increase in network capacity with respect to the number of tasks.

