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•  and  cannot be distinguished using any  many samples if u p n > 0 k ≫ n
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• Arbitrary distributions can’t be learnt in  distance with finite samplesℓ1

•  is the uniform distribution on u [0,1]

•  is constructed by drawing  samples from  and assigning a mass  at each sample locationp k > 0 u 1/k

•
•  and  cannot be distinguished using any  many samples if u p n > 0 k ≫ n

• Since  any  suffers either  or ∥u − p∥1 = 2 f est ∥f est − u∥1 ≥ 1 ∥f est − p∥1 ≥ 1
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• If  is unimodal, choose  to achieve uni-modal’s min-max rate f t = 𝒪(n1/3), d = 0 𝒪(1/n1/3)

• If  log-concave, choose  to achieve log-concave’s min-max rate of f t = 𝒪(n1/5), d = 1
𝒪(1/n2/5)

• Similarly Gaussian and their mixtures
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• For any ,  if  [Chan et. al. 14]. In this work we show 
 even if 

f est c ≥ 2 t ≥ 2, d ≥ 0
c ≥ 2 t ≥ 1, d ≥ 1

• Previous estimators achieve  [Yatracos 85, Acharya et. al. 15, 
Hao et. al. 20] w.r.t.  depending on the degree  for any  pieces 

c ∈ [2.25,3]
𝒫t,d d # t ≥ 1

• In this work we achieve the optimal c = 2
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