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 Non-parametric estimation of any arbitrary univariate distribution,
f : discrete + continuous density
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* Plecewise polynomial approximation to construct feSt

Slides at: www.vaishakhr.com/turf.pdf



http://www.vaishakhr.com/turf.pdf

A primer on 7, distance

Slides at: www.vaishakhr.com/turf.pdf



http://www.vaishakhr.com/turf.pdf

A primer on 7, distance

» Arbitrary distributions can’t be learnt in | distance with finite samples

Slides at: www.vaishakhr.com/turf.pdf



http://www.vaishakhr.com/turf.pdf

A primer on 7, distance

» Arbitrary distributions can’t be learnt in | distance with finite samples

 u is the uniform distribution on [0,1]

Slides at: www.vaishakhr.com/turf.pdf



http://www.vaishakhr.com/turf.pdf

A primer on 7, distance

» Arbitrary distributions can’t be learnt in | distance with finite samples

 u is the uniform distribution on [0,1]

* pis constructed by drawing k > 0 samples from u and assigning a mass 1/k at each sample location

Slides at: www.vaishakhr.com/turf.pdf



http://www.vaishakhr.com/turf.pdf

A primer on 7, distance

» Arbitrary distributions can’t be learnt in | distance with finite samples

 u is the uniform distribution on [0,1]

* pis constructed by drawing k > 0 samples from u and assigning a mass 1/k at each sample location

U p

Slides at: www.vaishakhr.com/turf.pdf



http://www.vaishakhr.com/turf.pdf

A primer on 7, distance

» Arbitrary distributions can’t be learnt in | distance with finite samples

 u is the uniform distribution on [0,1]

* pis constructed by drawing k > 0 samples from u and assigning a mass 1/k at each sample location

U p

1 and p cannot be distinguished using any n > 0 many samples if k > n

Slides at: www.vaishakhr.com/turf.pdf



http://www.vaishakhr.com/turf.pdf

A primer on 7, distance

» Arbitrary distributions can’t be learnt in | distance with finite samples

 u is the uniform distribution on [0,1]

* pis constructed by drawing k > 0 samples from u and assigning a mass 1/k at each sample location

U p

1 and p cannot be distinguished using any n > 0 many samples if k > n

» Since ||u — p||; = 2 any f* suffers either [|f*" — ul|; > 1 or ||[f*" = p||, > 1
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» We'd like an estimator f** such that E|[f*" —f||; < c- ||[f = P, 4| + O(RF (P, )

« We call it a c-factor approximation for L@t,d
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* Similarly Gaussian and their mixtures
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