Model Agnostic Sample Reweighting for Domain Generalization

Xiao Zhou*,1, Yong LIN*,1, Renjie Pi*,1, Weizhong Zhang 1 , Renjie Xu 2 , Peng Cui 2 , Tong Zhang 1

st Equal Contribution, 1 Hong Kong University of Science and Technology, 2 Tsinghua University

July 6, 2022

Background (OOD problem)

Out-of-distribution (OOD) generalization problem:

- The conventional i.i.d. assumption may fail because the testing distribution is the same with the training one.
- This is especially problematic if a model relies on spurious feature which exhibit high correlation with target in the training set.

camel

COW

Background (IRM and DRO)

Invariant Risk Minimization (IRM) [Arjovsky et al., 2019] and Distributional Robust Optimization (DRO) [Sagawa et al., 2019] are two popular methods to alleviate this problem.

$$\mathcal{R}_{\mathsf{IRMv1}}(\mathcal{D}, \boldsymbol{\theta}) := \sum_{e} \mathcal{L}(\mathcal{D}^{e}, \boldsymbol{\theta}) + \lambda \|\nabla_{\nu} \mathcal{L}(\mathcal{D}^{e}, \boldsymbol{\theta})\|_{2}^{2} \tag{1}$$

$$\mathcal{R}_{\mathsf{Group\text{-}DRO}}(\mathcal{D}, \theta) := \max_{e} \mathcal{L}(\mathcal{D}^{e}, \theta) \tag{2}$$

where $\mathcal{L}(\mathcal{D},\theta)$ is the loss on dataset \mathcal{D} of model θ . However, recent literature shows that IRM and DRO deteriorates dramatically if overfitting occurs, which is commonly the case with large DNN [Lin et al., 2022]. ¹

Bilevel Model Agnostic Reweighting (MAPLE)

Motivation:

- Reweighting is a popular technique on mitigating bias (the correlation between Y and spurious feature is a kind of bias).
- If we can find a proper reweighting, we can train a reweighted ERM to learn a invariant feature.

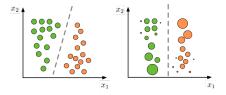


Figure: Left) unweighted; Right) weighted. x_1 and x_2 are the invariant and spurious features, respectively. Fitting a linear classifier $[w_1, w_2]^T[x_1, x_2]$ on unweighted results in a model biased towards x_2 with $w_2 \neq 0$.

MAPLE

We use IRM loss to guide the searching for such weight. The space of sample weights is much smaller than that of the NN parameters. Consider the reweighting function:

$$S = \{s : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^+ | \mathbb{E}[s(\mathbf{x}, \mathbf{y})] = 1\}.$$

We bilevel method to optimize for the reweighting function:

$$\min_{\mathbf{s} \in \mathcal{S}} \mathcal{L}(\boldsymbol{\theta}^*(\mathbf{s}); \mathcal{D}_{\mathbf{v}}), \tag{3}$$

s.t.
$$\theta^*(s) \in \underset{\theta}{\operatorname{arg \, min}} \mathcal{R}(\theta; \mathcal{D}_{tr}(s)),$$
 (4)

here $\theta = [w, \Phi]$, \mathcal{D}_{tr} and \mathcal{D}_{v} are training and validation dataset from the same distribution, respectively. $\mathcal{D}(s)$ is the dataset reweighted by s. $\mathcal{R}(\theta; \mathcal{D})$ and $\mathcal{L}(\theta; \mathcal{D})$ are the ERM and IRM risk on dataset \mathcal{D} . Specifically:

$$\mathcal{R}(\boldsymbol{\theta}, \mathcal{D}(s)) = \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}} s(\mathbf{x}, y) \ell(\boldsymbol{\theta}; \mathbf{x}, y)$$

Analysis in a linear case

Consider $\mathbf{x} = [\mathbf{x}_{inv}, \mathbf{x}_s]$. We want to fit a linear model $\boldsymbol{\theta}^{\top} \mathbf{x}$ to predict y.

Lemma (Existence of a "debiased" weighting function)

Given infinite data in the training dataset \mathcal{D}_{tr} , there exists a weight function $s \in \mathcal{S}$, i.e.,

$$s(\mathbf{x}, y) = \frac{\mathbb{P}(\mathbf{x}_{inv}, y)\mathbb{P}(\mathbf{x}_s)}{\mathbb{P}(\mathbf{x}_{inv}, \mathbf{x}_s, y)},$$

such that the solution of Eq. (4) satisfies that

$$\boldsymbol{\theta}^*(s) = \bar{\boldsymbol{\theta}} = [\bar{\boldsymbol{\theta}}_{inv}; \mathbf{0}],$$

where $\bar{\theta}_{inv}$ is the optimal model that merely uses \mathbf{x}_{inv} , i.e.,

$$ar{ heta}_{\mathit{inv}} := rg \min_{oldsymbol{ heta} \in \mathbb{R}^{d_{\mathit{inv}}}} \mathbb{E}[(y - oldsymbol{ heta}^ op oldsymbol{x}_{\mathit{inv}})^2]$$

Analysis in a linear case

Assumption

Given infinite dataset \mathcal{D} , the optimal invariant predictor $\bar{\boldsymbol{\theta}}$ is identifiable by the IRM risk \mathcal{L} , i.e., $\mathcal{L}(\bar{\boldsymbol{\theta}},\mathcal{D}) < \mathcal{L}(\boldsymbol{\theta},\mathcal{D}), \forall \boldsymbol{\theta} \in \mathbb{R}^d, \boldsymbol{\theta} \neq \bar{\boldsymbol{\theta}}$.

This assumption is verified in [Arjovsky et al., 2019] with some conditions.

Theorem (Identifiability of MAPLE)

Assuming infinite data in both \mathcal{D}_{tr} and \mathcal{D}_{v} , when Assumption 1 holds, the populated MAPLE, i.e., Eqn.(3)-(4), can uniquely identify $\bar{\theta}$.

If \mathcal{D}_{tr} and \mathcal{D}_{v} contain finite samples, we first obtain $\hat{\theta}(s)$ on \mathcal{D}_{tr} by solving Eqn. (4). Regarding $\hat{\theta}(\cdot)$ as a fixed mapping independent of \mathcal{D}_{v} , assuming \hat{s} is a ϵ -approximated solution of MAPLE in. (3), we can also obtain some finite sample properties ($|\mathcal{D}_{v}| = n$), e.g.,

$$\mathbb{E}[\mathcal{L}(\hat{\boldsymbol{\theta}}(\hat{\boldsymbol{s}}), \mathcal{D}_{v})] \leq \min_{s} \mathbb{E}[\mathcal{L}(\hat{\boldsymbol{\theta}}(\boldsymbol{s}), \mathcal{D}_{v})] + \epsilon + C\sqrt{\frac{2\ln(2|\mathcal{S}|/\delta)}{n}}$$

Xiao Zhou*,1, Yong LIN*,1, Renjie Pi*,1, VModel Agnostic Sample Reweighting for Dom

Experiments

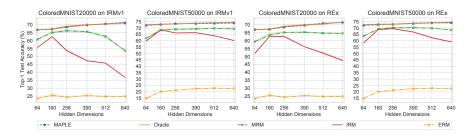


Figure: Comparison between MAPLE and baselines on CMNIST. "Oracle" means training ERM on the dataset without spurious feature, serving as an upper bound.

Experiments

Method	ColoredObject	${\sf CifarMnist}$
Oracle	87.9±0.6	83.7±1.5
ERM	49.8±0.4	39.5±0.4
IRMv1	71.4 ± 0.2	51.3 ± 3.0
REx	73.2 ± 2.9	50.1 ± 2.2
InvRat	$73.5 {\pm} 1.5$	$52.3 {\pm} 0.9$
BayesianIRM	78.1 ± 0.6	59.3 ± 2.3
SparseIRM	$80.1 {\pm} 1.0$	$62.3 {\pm} 0.7$
MAPLE	86.9 ±0.5	82.5 ±0.4

Table: Test accuracy on IRM tasks with ResNet-18

Experiments

Method	Group Indexes in \mathcal{D}_{tr}	Test Average	Test Worst
Upweighting [Cui et al., 2019]	Yes	92.2	87.4
GroupDRO [Sagawa et al., 2019]	Yes	93.5	91.4
ERM	No	97.3	72.6
CVaR DRO [Levy et al., 2020]	No	96.0	75.9
LfF [Nam et al., 2020]	No	91.2	78.0
JTT [Liu et al., 2021]	No	93.3	86.7
MAPLE	No	92.9	91.7

Table: Comparison of MAPLE and state-of-the-art DRO methods in Waterbirds. The validation set has group annotation following [Liu et al., 2021].

MAPLE

Advantages:

- Mapping the optimization from parameter space to sample weighting space. Alleviating the overfitting problem of IRM (also applicable to DRO).
- Agnostic to the model (the neural network can be easily replaced with another one).

Disadvantages:

Bilevel training introduces computational overhead, affecting scalability.

- Arjovsky, M., Bottou, L., Gulrajani, I., & Lopez-Paz, D. (2019). Invariant risk minimization.
- Cui, Y., Jia, M., Lin, T.-Y., Song, Y., & Belongie, S. (2019). Class-balanced loss based on effective number of samples.
- Levy, D., Carmon, Y., Duchi, J. C., & Sidford, A. (2020). Large-scale methods for distributionally robust optimization.
- Lin, Y., Dong, H., Wang, H., & Zhang, T. (2022).

 Bayesian invariant risk minimization.

 In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 16021–16030).
- Liu, E. Z., Haghgoo, B., Chen, A. S., Raghunathan, A., Koh, P. W., Sagawa, S., Liang, P., & Finn, C. (2021).

 Just train twice: Improving group robustness without training group
 - In *International Conference on Machine Learning* (pp. 6781–6792).: PMLR.
- Nam, J., Cha, H., Ahn, S., Lee, J., & Shin, J. (2020)

information.

Learning from failure: Training debiased classifier from biased classifier.

arXiv preprint arXiv:2007.02561.

Sagawa, S., Koh, P. W., Hashimoto, T. B., & Liang, P. (2019). Distributionally robust neural networks for group shifts: On the importance of regularization for worst-case generalization. *arXiv preprint arXiv:1911.08731*.