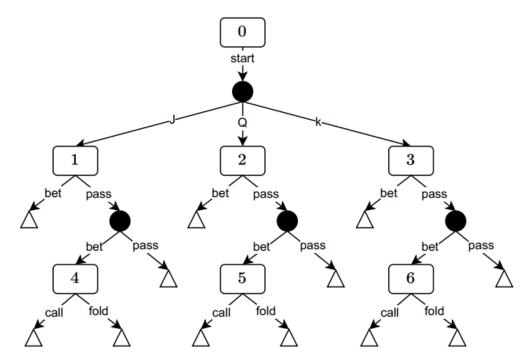


Equivalence Analysis between Counterfactual Regret Minimization and Online Mirror Descent

Weiming Liu^{*}, Huacong Jiang, Bin Li^{*}, Houqiang Li University of Science and Technology of China

- Extensive-Form Games (EFGs)
 - \Rightarrow Sequential Decision Process

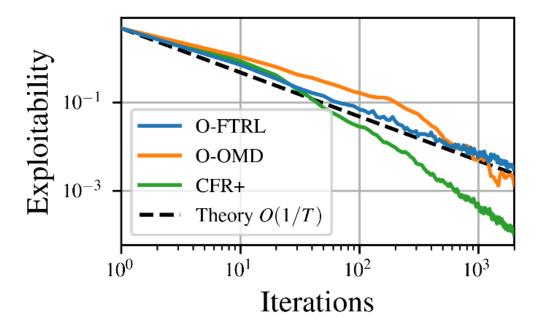


Decision process in Kuhn poker

- Extensive-Form Games (EFGs)
 - \Rightarrow Sequential Decision Process
- Algorithms:
 - Counterfactual Regret Minimization (CFR) (Zinkevich et al., 2007)
 - Follow-the-Regularized-Leader (FTRL) (Abernethy et al., 2008)
 - Online Mirror Descent (OMD) (Beck & Teboulle, 2003)
 - Excessive Gap Technique (Hoda et al., 2010; Kroer et al., 2020), ...
- Target:
 - Converge to a Nash Equilibrium
 - \Rightarrow Exploitability to zero

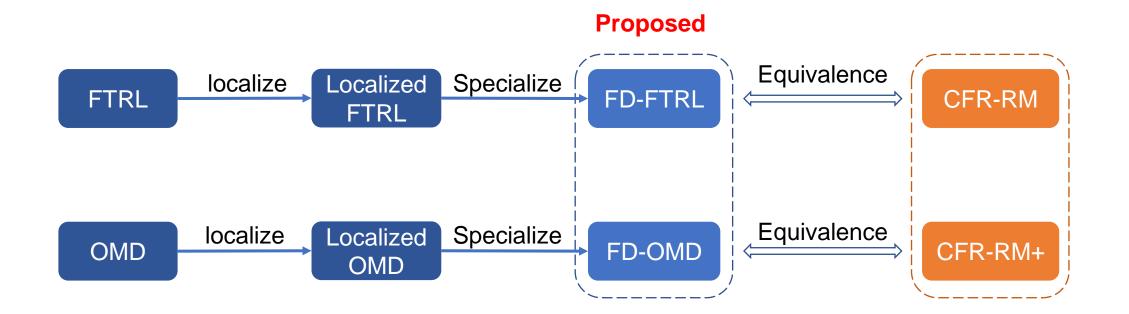
- Inconsistency between theory and practice
- Theory:
 - CFR+ (Tammelin et al., 2015): $O(1/\sqrt{T})$
 - Optimistic OMD (O-OMD) (Farina et al., 2019): O(1/T)

- Inconsistency between theory and practice
- Theory:
 - CFR+ (Tammelin et al., 2015): $O(1/\sqrt{T})$
 - Optimistic OMD (O-OMD) (Farina et al., 2019): O(1/T)
- Practice:
 - CFR+ (green line) is much faster.



- Questions:
 - How to explain the superior performance of CFR?
 - How to improve the practical performance of FTRL (OMD)?
 - Are there strong connections between CFR and FTRL (OMD)?
- Contributions:
 - Prove that CFR-RM (CFR-RM+) is equivalent to a special FTRL (OMD)
 - Propose a special OMD, which is **faster** than CFR+ in some EFGs.

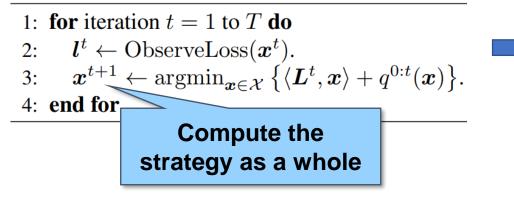
Equivalence Analysis: Overview



Equivalence Analysis: Localization

• Localization (Hoda et al., 2010; Farina et al., 2019b)

Algorithm 1 FTRL



Algorithm 3 Localized (FD-)FTRL

- 1: for iteration t = 1 to T do
- $l^t \leftarrow \text{ObserveLoss}(x^t).$ 2:
- for node $j \in \mathcal{J}$ in bottom-up order do 3:

4:
$$\hat{L}_{j'}^{\prime t}[a] \leftarrow L^{t}[j,a] + \sum_{j' \in C_{j,a}} -\psi_{j'}^{*t}(-\hat{L}_{j'}^{\prime t}).$$

5:
$$\hat{x}_j^{t+1} \leftarrow \nabla \psi_j^{*t}(-\hat{L}_j'^t).$$

end for 6:

8: **end for**

7:

Construct x^{t+1} . **Recursively compute local decisions**

Equivalence Analysis: Localization

- Localization (Hoda et al., 2010; Farina et al., 2019b)
 - ψ is the regularizer, e.g., l_2 norm function

Algorithm 3 Localized (FD-)FTRL

1: for iteration t = 1 to T do $l^t \leftarrow \text{ObserveLoss}(x^t).$ 2: for node $j \in \mathcal{J}$ in bottom-up order **do** 3: $\hat{\boldsymbol{L}}_{j}^{\prime t}[a] \leftarrow \boldsymbol{L}^{t}[j,a] + \sum_{j' \in C_{j,a}} -\psi_{j'}^{*t}(-\hat{\boldsymbol{L}}_{j'}^{\prime t}).$ 4: $\hat{x}_{i}^{t+1} \leftarrow \nabla \psi_{i}^{*t}(-\hat{L}_{i}^{\prime t}).$ 5: end for 6: Construct x^{t+1} $7 \cdot$ Convex conjugate: 8: **end for** $\psi_{j}^{*t}(\hat{\boldsymbol{g}}) = \max_{\hat{\boldsymbol{x}}_{j} \in \Delta^{n_{j}}} \left\{ \langle \hat{\boldsymbol{g}}, \hat{\boldsymbol{x}}_{j} \rangle - \psi_{j}^{t}(\hat{\boldsymbol{x}}_{j}) \right\}$ $\psi_{i}^{t}(\hat{x}_{j}) = \frac{1}{2}\beta_{i}^{t} \|\hat{x}_{j}\|_{2}^{2}$

Equivalence Analysis: Localization

- Localization (Hoda et al., 2010; Farina et al., 2019b)
 - ψ is the regularizer, e.g., l_2 norm function
 - Is there a regularizer such that FTRL can recover CFR-RM?

Algorithm 3 Localized (FD-)FTRL

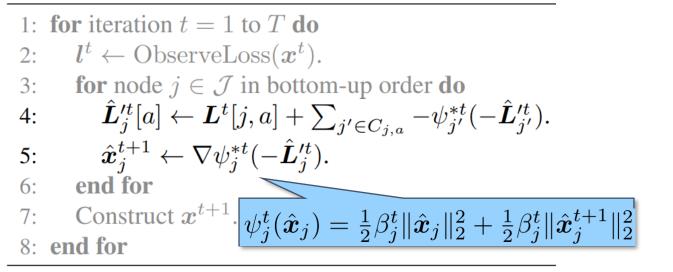
for iterati	on $t = 1$ to T do
$l^t \leftarrow C$	$ObserveLoss(x^t).$
for not	le $j \in \mathcal{J}$ in bottom-up order do
$\hat{m{L}}_j^{\prime t}[a]$	$[a] \leftarrow L^t[j, a] + \sum_{j' \in C_{j, a}} -\psi_{j'}^{*t}(-\hat{L}_{j'}^{'t}).$
$\hat{m{x}}_j^{t+1}$	$\leftarrow \nabla \psi_j^{*t}(-\hat{L}_j'^t).$
Constru	uct x^{t+1}
end for	Convex conjugate:
	$egin{aligned} \hat{\psi}_j^{*t}(\hat{oldsymbol{g}}) \ = \ \max_{\hat{oldsymbol{x}}_j \in \Delta^{n_j}} \left\{ \langle \hat{oldsymbol{g}}, \hat{oldsymbol{x}}_j angle - \psi_j^t(\hat{oldsymbol{x}}_j) ight\} \end{aligned}$
	$\psi_j^t(\hat{\boldsymbol{x}}_j) = \frac{1}{2}\beta_j^t \ \hat{\boldsymbol{x}}_j\ _2^2$
	$l^t \leftarrow C$ for not $\hat{L}'^t_j[d$ \hat{x}^{t+1}_j end for Constru

Algorithm 2 CFR-RM		
1:	for iteration $t = 1$ to T do	
2:	$l^t \leftarrow \text{ObserveLoss}(x^t).$	
3:	for node $j \in \mathcal{J}$ in bottom-up order do	
4:	j = j = j = j = j	
5:	$egin{aligned} \hat{m{R}}_j^t &\leftarrow \hat{m{R}}_j^{t-1} + \langle \hat{m{l}}_j^t, \hat{m{x}}_j^t angle m{1} - \hat{m{l}}_j^t, \ \hat{m{x}}_j^{t+1} &\leftarrow [\hat{m{R}}_j^t]^+ / \ [\hat{m{R}}_j^t]^+ \ _1. \end{aligned} ight\} extsf{RM}$	
6:	$\hat{x}_{j}^{t+1} \leftarrow [\hat{R}_{j}^{t}]^{+} / \ [\hat{R}_{j}^{t}]^{+}\ _{1}.$	
7:	end for	
8:	Construct x^{t+1} .	
9:	end for	

Equivalence Analysis: Specialization

- Future-Dependent FTRL (FD-FTRL)
 - The regularizer is dependent on the next decision \hat{x}_j^{t+1} .
 - Note: the next decision does not depend on itself.

Algorithm 3 Localized (FD-)FTRL



Equivalence Analysis: Theorem

- CFR-RM (CFR-RM+) ⇔ a special FD-FTRL (FD-OMD)
 - CFR-RM (CFR-RM+) is an **adaptive** FTRL (OMD).
 - FTRL(OMD) with adaptation could be faster.

Theorem 3.7. *CFR-RM* (*CFR-RM*+) is equivalent to a special case of FD-FTRL (*FD-OMD*) with $\beta_j^t = \|[\hat{R}_j^t]^+\|_1$ $(\|\hat{Q}_j^t\|_1), \forall j \in \mathcal{J}, t \geq 0.$

Application: Adaptive FD-FTRL (FD-OMD)

• Reparametrized FD-FTRL (FD-OMD) with adaptation

Algorithm 3 Localized (FD-)FTRL

1: for iteration t = 1 to T do 2: $l^t \leftarrow \text{ObserveLoss}(x^t)$. 3: for node $j \in \mathcal{J}$ in bottom-up order do 4: $\hat{L}_j'^t[a] \leftarrow L^t[j,a] + \sum_{j' \in C_{j,a}} -\psi_{j'}^{*t}(-\hat{L}_{j'}')$. 5: $\hat{x}_j^{t+1} \leftarrow \nabla \psi_j^{*t}(-\hat{L}_j'^t)$. 6: end for 7: Construct x^{t+1} . 8: end for

Algorithm 4 Reparameterized FD-FTRL

- 1: for iteration t = 1 to T do
- 2: $l^t \leftarrow \text{ObserveLoss}(x^t)$.
- 3: for node $j \in \mathcal{J}$ in bottom-up order do
- 4: $\hat{\boldsymbol{L}}_{j}^{\prime t}[a] \leftarrow \boldsymbol{L}^{t}[j,a] + \sum_{j' \in C_{j,a}} \alpha_{j'}^{t}.$
- 5: $\hat{R}_{j}^{\prime t} \leftarrow \alpha_{j}^{t} \mathbf{1} \hat{L}_{j}^{\prime t}.$

6:
$$\hat{x}_j^{t+1} \leftarrow [\hat{R}_j'^t]^+ / \|[\hat{R}_j'^t]^+\|_1.$$

- 7: end for
- 8: Construct x^{t+1} .
- 9: **end for**

Application: Adaptive FD-FTRL (FD-OMD)

- Reparametrized FD-FTRL (FD-OMD) with adaptation
- Adapt the parameters like in CFR-RM (CFR-RM+)

Algorithm 3 Localized (FD-)FTRL

- 1: for iteration t = 1 to T do 2: $l^t \leftarrow \text{ObserveLoss}(\boldsymbol{x}^t)$. 3: for node $j \in \mathcal{J}$ in bottom-up order do 4: $\hat{L}_j'^t[a] \leftarrow L^t[j,a] + \sum_{j' \in C_{j,a}} -\psi_{j'}^{*t}(-\hat{L}_{j'}')$.
- 6: end for
- 7: Construct x^{t+1} .
- 8: **end for**

Algorithm 4 Reparameterized FD-FTRL

- 1: for iteration t = 1 to T do
- 2: $l^t \leftarrow \text{ObserveLoss}(x^t)$.
- 3: for node $j \in \mathcal{J}$ in bottom-up order do
- 4: $\hat{\boldsymbol{L}}_{j}^{\prime t}[a] \leftarrow \boldsymbol{L}^{t}[j,a] + \sum_{j' \in C_{j,a}} \alpha_{j'}^{t}.$
- 5: $\hat{R}_{j}^{\prime t} \leftarrow \alpha_{j}^{t} \mathbf{1} \hat{L}_{j}^{\prime t}.$
- 6: $\hat{x}_{j}^{t+1} \leftarrow [\hat{R}_{j}^{\prime t}] \stackrel{\text{(III}}{\longrightarrow} \hat{R}_{j}^{\prime t}]^{+} \parallel_{1}.$
- 7: end for 8: Construct x^{t+1} $\|[\alpha_j^t \mathbf{1} - \hat{L}_j'^t]^+\|_2^2 = \lambda_j^t$.
- 9: **end for**

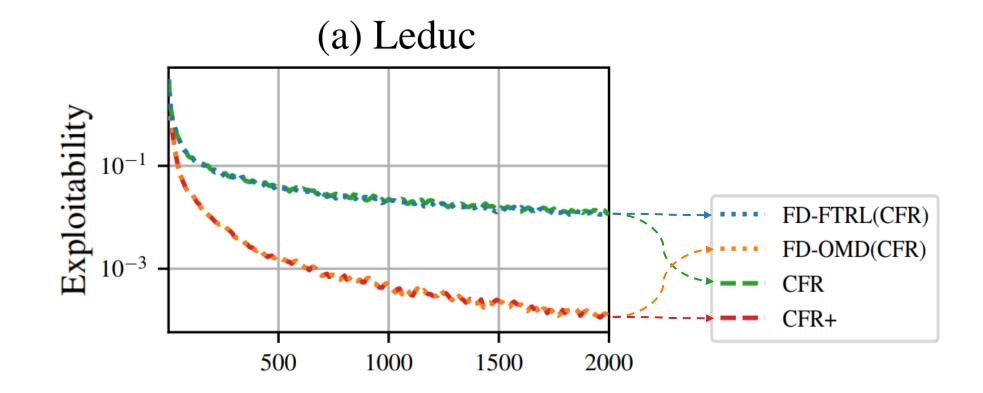
Application: Convergence

- Let λ_i^t be lower bounded by the cumulative counterfactual regret
- FD-FTRL (FD-OMD) can converge at a rate of $O(1/\sqrt{T})$

Corollary 3.9. If
$$\eta \sum_{k=1}^{t} \|\hat{r}_{j}^{k}\|_{2}^{2} \leq \lambda_{j}^{t}$$
 and $\lambda_{j}^{t-1} \leq \lambda_{j}^{t}$, $\forall j \in \mathcal{J}, t > 0$, then, the total regret of FD-
FTRL(R) (FD-OMD(R)) after T iterations is $R^{T} \leq \sum_{j \in \mathcal{J}} \left(\sqrt{n_{j}} + \frac{1}{\eta}\right) \sqrt{\lambda_{j}^{T}}$.

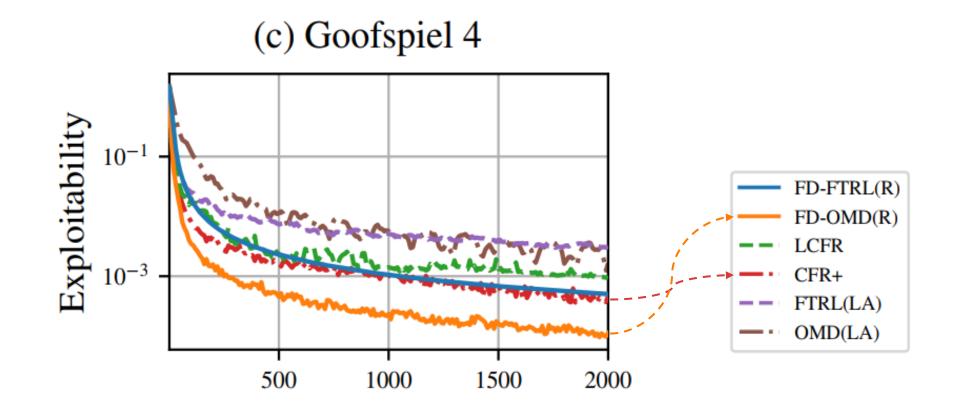
Results: Empirical equivalences

• FD-FTRL (FD-OMD) can recover CFR (CFR+)



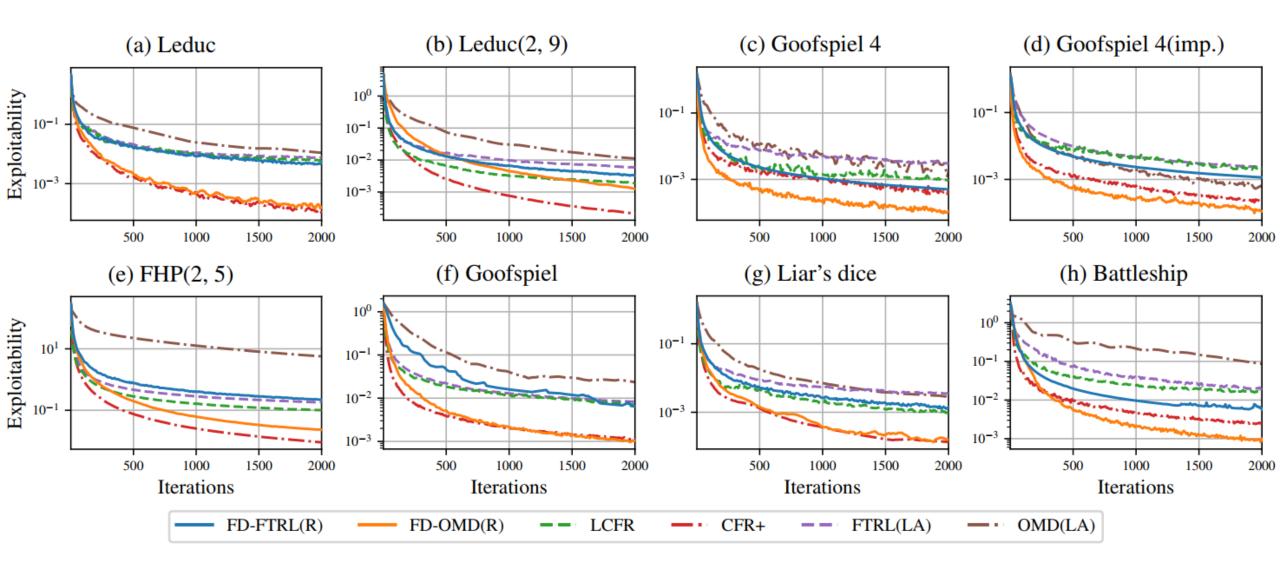
Results: Adaptive FD-OMD

• FD-OMD (Orange) is faster than CFR+ (Red)



Results: Adaptive FD-OMD

• FD-OMD (Orange) is no worse than CFR+ (Red) in 6/8 games.



Conclusions

- CFR-RM (CFR-RM+) is equivalent to a special FTRL (OMD)
 - Partially explain the superior performance of CFRs
- Propose FD-FTRL and FD-OMD
 - Faster than the non-adaptive FTRL and OMD in EFGs
 - Contrary to previous findings, OMD can be faster than CFR+

Find more details in the paper:

Liu, W., Jiang, H., Li, B., and Li, H. Equivalence Analysis between Counterfactual Regret Minimization and Online Mirror Descent. In *International Conference on Machine Learning*, 2022.