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Contrastive Learning (CL): Sample Identification Task

Positives

Negatives B(x;)

B (xi)
CL can be viewed as a sample identification task:
N
3 1 . L .
Lnce (%) = ——= Z loglgncr (il = x;) ldentifying sample x; or its
N = augmentation as sample-i




Data Augmentation for Self-Supervised Learning

(1) Random Augmentation

-Uses pre-defined random image transformation.

-Carefully tune the hyperparameter for each
transformation.

Image
Augmentation

(2) Adversarial Augmentation

-CLAE [1] uses adversarial augmentation to generate
hard positives/negatives.

Clean Adv. Diff.

[1] Chih-Hui Ho and Nuno Vasconcelos. Contrastive learning with adversarial examples. Neurips, 2020.



Data Augmentation for Self-Supervised Learning

(1) Random Augmentation
(Easy and identity-preserved):

-Too easy for the sample identification task.

-Lead to nearly 0 loss and inefficient training.
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(2) Adversarial Augmentation
(Hard but the identity might change):

-May change the original sample identity.

-Infeasible to tune the attack strength for every
sample to preserve the identity.
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Data Augmentation for Self-Supervised Learning

Aim: (Hard and identity-preserved) augmentation

Main idea:

-Disentangle the sample into two parts: identity-related part and identity-disentangled part.

-Maintain the identity-related part intact, adversarailly change the identity-disentangled part.
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Information-theoretic Interpretation

« ldentity-disentanglement via VAE

Lemma 3.2. (VAE objective and I(z;y) from Eq. (29) in
(Alemi et al., 2016)). Assume that the bottleneck features
of VAE are denoted by z, the encoder is E(-) and produces
distribution pg(z|x), the decoder is D(-) and produces
distribution qp(x|z), the prior for z is p(z), and the KL-
divergence regularization in the VAE objective Ly ax has a
weight (B, we have:

—I(z;x) +|B81(z;y)| < Lyag, (5)

Lvag 2 — / dep(z) / dzpi (2)) log g (z12)

(6)

+ 8> Dt (o (el = 22) lIp(2)).

|dentity-disentangled part: VAE reconstruction G (x)

|dentity-related part: residual of VAE R(x) £ x — G(x)



Information-theoretic Interpretation

|dentity-disentangled data augmentation: x’ = R(x) + G'(x)

/\

Maintain the identity-rela-ted part R(x) intact change the identity—disen-tangled part G(x) into G'(x)

+ Identity-preserving lower bound of the augmentation

Theorem 3.5. (Identity-disentangled data augmentation).
If we use a VAE in the identity-disentangled data generative
model for Lemma 3.3, and if we define an augmentation
' = R(x) + G () with G'(x) ~ qp(x|2’) and 2’ = z+ 6
(a d-perturbed z)), there exists a small € > 0 such that for
any ||6]|, < €, we can lower bound I(z';y) as

I(z';y) 2 I(z;y) — %(LVAE + I(z;x)) (8)




ldentity-disentangled Adversarial Augmentation (IDAA)

Original image Identity-disentangled Identity-relevant Adversarially attacked G(x) Augmented data

Adversarial attack:
Z—Z+6
8 = ESign(VsLNCE)

\ J

G()

G(x) x—G(x)

Figure 2. Architecture and pipeline of Identity-Disentangled Adversarial Augmentation (IDAA).

x'"=R(x)+ D(E(x) + 6%),6" = esign(VsLyce(X")) g



Experiments

« Self-Supervised Learning Experiments

IDAA brings significant improvements to many SSL methods (both contrastive and non-

contrastive methods) on mainstream benchmarks, including CIFAR and ImageNet.

Batch  ImageNet

Method kNN Linear Evaluation
CIFAR10 CIFARIO0  minilmageNet CIFAR10 CIFAR100 minilmageNet

Plain 82.78+0.20 54.73+0.20 46.9610.32 79.65+0.43 51.824+0.46 44.9040.29
Plain+CLAE 83.09+0.19 55.28+0.12 47.011+0.28 79.944+0.28 52.14+0.21 45.4340.15
Plain+IDAA 86.00+0.16 58.64+0.15 47.83+0.29 82.83+0.10 56.12+0.16 46.81+0.16
UEL 83.631+0.14 55.23+0.28 40.71+0.73 80.63+0.18 52.99+0.25 43.08+0.35
UEL+CLAE 84.00+0.15 55.96+0.06 41.75+0.39 80.944-0.13 54.27+0.40 44.3240.24
UEL+IDAA 86.69+0.13 59.04+0.18 43.24+0.32 83.65+0.17 57.254+0.19 45.744-0.30
SimSiam 88.22+0.10 57.13+0.20 31.68+0.28 89.84+0.15 62.76+0.13 40.621-0.48
SimSiam+CLAE 85.59+0.21 53.88+0.08 27.77+3.47 87.77+0.08 60.89+0.22 37.321+0.47
SimSiam+IDAA [ 89.08+0.12 58.19+0.19 32.14+0.58 90.99+0.18 65.21+0.37 41.24+-0.51
SimCLR 80.79+0.10 41.11+0.28 30.13+0.28 86.40+0.18 57.81+0.10 46.1340.23
SimCLR+CLAE 80.2740.18 43.5740.17 32.234+0.08 85.25+0.07 57.69+0.25 46.7610.16
SimCLR+IDAA  83.4140.22 46.7810.22 33.66+0.16 88.07+0.22 60.90+0.08 48.234+0.23

Method Epoch Size Top-1 Top-5
MoCo (He et al., 2020) 200 256 60.6 -
MoCo v2 (Chen et al., 2020b) 200 256 67.5 88.2
MoCHi (Kalantidis et al., 2020) 800 512 68.7 -
SimCLR (Chen et al., 2020a) 1000 4096 69.3 89.0
SwAV (Caron et al., 2020) 400 4096 70.1 -
AdCo (Hu et al., 2021) 200 256 68.6 -
InfoMin (Tian et al., 2020a) 200 256 70.1 894
SimSiam (Chen et al., 2020a) 100 256 68.1 -
SimSiam (Chen et al., 2020a) 200 256 70.0 -
SimSiam® 100 256 68.1 88.2
SimSiam®+IDAA 100 256 69.0 88.8
SimSiam® 200 256 69.8 89.2
SimSiam®+IDAA 200 256 70.6 89.7




Experiments

Transfer Learning Performance

CIFAR1I0 CIFAR100 Birdsnap Aircraft DTD  Pets Flower CUB-200

SimCLR 61.83 36.55 12.68 2419 5435 46.46  75.00 16.73
SimCLR+CLAE 61.59 3713 13.61 25.87  52.12 4355 76.82 17.58
SimCLR+IDAA 64.49 38.82 13.89 26.02 5497 46.76 77.99 18.15

Method COCO detection COCO instance seg.

APs¢ AP AP;s APZpsk Apmask  Apmesk

scratch 440 264 278 46.9 29.3 30.8

ImageNet supervised 582 382 41.2 54.7 333 322

SimSiam (Chen et al., 2020a) 57.5 379 40.9 54.2 332 35:2

SimSiam+IDAA 582 38.7 420 55.1 359 359

Semi-Supervised Learning Performance

Method CIFAR100

400 labels 2500 labels 10000 labels
Fixmatch 47.76 66.30 74.13
Fixmatch+CLAE 50.34 68.58 74.54

Fixmatch+IDAA 52.88 68.96 75.28

10



Experiments

A Thorough Sensitivity Analysis
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Figure 5. SSL performance under different (a) batch sizes, (b) ResNet architectures, and (c) training epochs.
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Figure 6. SSL performance using different (a) 3, (b) VAE bottleneck dimensions, and (c) Attack strength e. 11
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