

Fast and Provable Nonconvex Tensor RPCA

Haiquan Qiu (presenter), Yao Wang, Shaojie Tang, Deyu Meng, Quanming Yao

Background

- Robust Principle Component Analysis (RPCA)
 - recover a low-rank matrix L^* from highly corrupted measurements $M = L^* + S^*$ where S^* is a sparse matrix
 - optimization objective

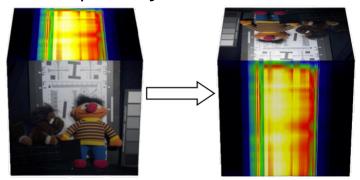
$$\min_{L,S} ||M - L - S||_F^2$$
s.t. $rank(L) \le r$,
$$||S||_0 \le M$$
.

convex surrogate

$$\min_{L,S} ||L||_* + \lambda ||S||_1$$
s.t. $M = L + S$

Background

- Tensor decomposition
 - Transformed t-SVD is used for our method, because it can model tensor in both the time domain and frequency domain
 - Time domain
 - equivalent to the low rank of tensor's mode-1 unfolding matrix
 - Frequency domain
 - noises are concentrated in high frequency term
 - Other decompositions such as CP / Tucker cannot model tensor in both time and frequency domain and do not have best low rank approximation



- right tensor has lower rank than the left tensor
- noise will be transformed into high frequency term in frequency domain
- applying smaller rank to high frequency term will further improve performance

Tensor RPCA (TRPCA)

• Recover a low-rank tensor $\mathcal{L}^* \in \mathbb{R}^{n \times n \times q}$ from highly corrupted measurements $\mathcal{D} = \mathcal{L}^* + \mathcal{S}^*$ where \mathcal{S}^* is a sparse tensor

$$egin{aligned} \min_{\mathcal{L} \in \mathbb{L}, \mathcal{S} \in \mathbb{S}} & \|\mathcal{D} - \mathcal{L} - \mathcal{S}\|_F^2, \ & ext{subject to} & \begin{cases} \mathbb{L} \equiv \{\mathcal{X} \, | \, ext{rank}_m(\mathcal{X}) \leq oldsymbol{r} \}, \ & \mathbb{S} \equiv \{\mathcal{X} \, | \, \|\mathcal{X}\|_0 \leq K \} \end{aligned}$$

• Convex method based on Transformed t-SVD with recovery guarantee (Lu, et al. 2019)

$$\min_{\mathcal{L},\mathcal{S}} \|\mathcal{L}\|_{\Phi^*} + \lambda \|\mathcal{S}\|_1, \text{subject to } \mathcal{D} = \mathcal{L} + \mathcal{S}.$$

Alternating Projection TRPCA (APT)

Optimization objective

$$egin{aligned} \min_{\mathcal{L} \in \mathbb{L}, \mathcal{S} \in \mathbb{S}} & \|\mathcal{D} - \mathcal{L} - \mathcal{S}\|_F^2, \ & ext{subject to} & \left\{ \mathbb{L} \equiv \{\mathcal{X} \, | \, ext{rank}_m(\mathcal{X}) \leq r \}, \\ \mathbb{S} \equiv \{\mathcal{X} \, | \, \|\mathcal{X}\|_0 \leq K \} \end{aligned} \end{aligned}$$

 APT alternatively projects between low-rank space L and sparse space S

Algorithm 2 APT: Alternating Projection Algorithm for Tensor RPCA

- 1: Run Algorithm 1 for initialization
- 2: **for** k = 0 to T 1 **do**
- 3: $\mathcal{L}_{k+1} = P_{\mathbb{L}} (\mathcal{D} \mathcal{S}_k)$
- 4: $S_{k+1} = T_{\zeta_{k+1}}(\mathcal{D} \mathcal{L}_{k+1})$ where $\zeta_{k+1} = \beta \gamma^k \bar{\sigma}_1(\mathcal{D} \mathcal{S}_k)$
- 5: end for
- 6: **Return:** \mathcal{L}_T and \mathcal{S}_T

• Low-rank space projection

$$\mathcal{L}_{k+1} = P_{\mathbb{L}} \left(\mathcal{D} - \mathcal{S}_k \right)$$

truncated t-SVD (high computational complexity)

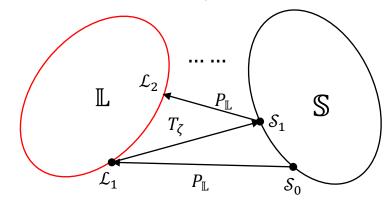
Theorem B.1. If $\mathcal{X} = \mathcal{U} \diamond_{\Phi} \mathcal{S} \diamond_{\Phi} \mathcal{V}^H \in \mathbb{C}^{m \times n \times q}$ is the transformed t-SVD of \mathcal{X} . Define $H_r(\mathcal{X})$ to be the approximation having multi-rank r: that is,

$$\hat{\mathcal{X}}_{\Phi}(:,:,i) = \hat{\mathcal{U}}_{\Phi}(:,1:r_i)\hat{S}_{\Phi}(1:r_i,1:r_i,i)\hat{V}_{\Phi}^H(:,1:r_i,i).$$

Then, $H_r(X)$ is the best multi-rank r approximation to X in the Frobenius norm and

- Sparse space projection
 - hard thresholding

$$\mathcal{S}_{k+1} = T_{\zeta_{k+1}}(\mathcal{D} - \mathcal{L}_{k+1})$$



Efficient Alternating Projection TRPCA (EAPT)

- less computational complexity on low-rank space projection than APT
- apply a tangent space projection before projecting the residue onto the low-rank space
- Low-rank space projection

$$\mathcal{L}_{k+1} = P_{\mathbb{L}} \circ P_{\mathbb{T}_k} (\mathcal{D} - \mathcal{S}_k)$$

• truncated t-SVD on a smaller tensor of size $2r \times 2r \times q$ (original size $n \times n \times q$, r is tensor tubal rank)

Algorithm 4 EAPT: Efficient Alternating Projection Algorithm for Tensor RPCA

- 1: Run Algorithm 1 for initialization
- 2: **for** k = 0 to T 1 **do**
- 3: $\tilde{\mathcal{L}}_k = \operatorname{Trim}(\mathcal{L}_k, \mu)$
- 4: $\mathcal{L}_{k+1} = P_{\mathbb{L}} \circ P_{\mathbb{T}_k} (\mathcal{D} \mathcal{S}_k)$
- 5: $S_{k+1} = T_{\zeta_{k+1}}(\mathcal{D} \mathcal{L}_{k+1})$ where ζ_{k+1} is in (7)
- 6: end for
- 7: **Return:** \mathcal{L}_T and \mathcal{S}_T

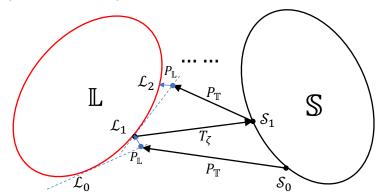
Proposition 4.2. Projection of $P_{\mathbb{T}}(\mathcal{Z})$ onto low multi-rank space \mathbb{L} can be executed by

$$P_{\mathbb{L}} \circ P_{\mathbb{T}} \left(\mathcal{Z} \right) = \begin{bmatrix} \mathcal{U} & \mathcal{Q}_1 \end{bmatrix} \diamond_{\Phi} P_{\mathbb{L}} \left(\mathcal{M} \right) \diamond_{\Phi} \begin{bmatrix} \mathcal{V}^H \\ \mathcal{Q}_2^H \end{bmatrix}, \quad (6)$$

where

$$\mathcal{M} = egin{bmatrix} \mathcal{U}^H \diamond_\Phi \mathcal{Z} \diamond_\Phi \mathcal{V} & \mathcal{R}_2^H \ \mathcal{R}_1 & \mathbf{0} \end{bmatrix} \in \mathbb{R}^{2r imes 2r imes q},$$

 $Q_1 \diamond_{\Phi} \mathcal{R}_1 = (\mathcal{I}_{\Phi} - \mathcal{U} \diamond_{\Phi} \mathcal{U}^H) \diamond_{\Phi} \mathcal{Z} \diamond_{\Phi} \mathcal{V} \text{ and } Q_2 \diamond_{\Phi} \mathcal{R}_2 = (\mathcal{I}_{\Phi} - \mathcal{V} \diamond_{\Phi} \mathcal{V}^H) \diamond_{\Phi} \mathcal{Z} \diamond_{\Phi} \mathcal{U} \text{ are } t\text{-}QR \text{ (Theorem B.2)}.$



Initialization of APT and EAPT

- Goal
 - construct an initial guess that is sufficient close to the ground truth and is inside the "basin of attraction"
- Initialization algorithm

Algorithm 1 Initialization

```
1: S_{-1} = T_{\zeta_{-1}}(\mathcal{D}) where \zeta_{-1} = \beta_{\text{init}} \cdot \bar{\sigma}_1(\mathcal{D})
```

2:
$$\mathcal{L}_0 = P_{\mathbb{L}}(\mathcal{D} - \mathcal{S}_{-1})$$

3:
$$S_0 = T_{\zeta_0}(\mathcal{D} - \mathcal{L}_0)$$
 where $\zeta_0 = \beta_0 \cdot \bar{\sigma}_1(\mathcal{D} - \mathcal{S}_{-1})$

4: **Return:** \mathcal{L}_0 and \mathcal{S}_0

• \mathcal{L}_0 and \mathcal{S}_0 are the initialization values for both APT and EAPT

Theoretical results

- Some assumptions:
 - assumption for low-rank tensor (incoherence)

Assumption 5.1. Given the transformed t-SVD of a tensor $\mathcal{L} = \mathcal{U} \diamond_{\Phi} \Sigma \diamond_{\Phi} \mathcal{V}^H \in \mathbb{R}^{n \times n \times q}$ with multi-rank r, \mathcal{L} is said to satisfy the tensor incoherent condition, if there exists $\mu > 0$ such that

Tensor-column:
$$\frac{nq}{s_r} \max_{i \in [n]} \|\mathcal{U}^H \diamond_{\Phi} \dot{e}_i\|_F^2 \leq \mu;$$
Tensor-row:
$$\frac{nq}{s_r} \max_{j \in [n]} \|\mathcal{V}^H \diamond_{\Phi} \dot{e}_j\|_F^2 \leq \mu.$$

• assumption for sparse tensor

Assumption 5.2. A sparse tensor $S \in \mathbb{R}^{n \times n \times q}$ is α -sparse, i.e., $\|S(:,i,:)\|_0 \le \alpha nq$ and $\|S(i,:,:)\|_0 \le \alpha nq$ for $i \in [n]$.

• Guarantee for the initialization close to ground truth

Proposition 5.3 (Algorithm 1 for initialization). Assume that a low multi-rank r tensor \mathcal{L}^* satisfies Assumption 5.1 and a sparse \mathcal{S}^* satisfies Assumption 5.2 with $\alpha\mu\lesssim \frac{1}{s_r\kappa\sqrt{q}}$. For hyperparameters obeying $\frac{\mu s_r\bar{\sigma}_1(\mathcal{L}^*)}{nq\bar{\sigma}_1(\mathcal{D})}\leq \beta_{init}\leq \frac{3\mu s_r\bar{\sigma}_1(\mathcal{L}^*)}{nq\bar{\sigma}_1(\mathcal{D})}$ and $\beta_0=\frac{\mu s_r}{2nq}$, the outputs of Algorithm 1 satisfy $\|\mathcal{L}-\mathcal{L}_0\|\leq 8\alpha\mu s_r\bar{\sigma}_1(\mathcal{L}^*)$ and $\|\mathcal{S}-\mathcal{S}_0\|_{\infty}\leq \frac{\mu s_r}{nq}\bar{\sigma}_1(\mathcal{L}^*)$.

Recovery guarantee of APT

Theorem 5.4 (Exact recovery of Algorithm 2). Under the assumption of Proposition 5.3, for any $\epsilon > 0$, we have $\|\mathcal{L}_T - \mathcal{L}^*\| \leq 8\alpha\epsilon$ and $\|\mathcal{S}_T - \mathcal{S}^*\|_{\infty} \leq 4\epsilon/nq$ with $T = \mathcal{O}\left(\log\left(\frac{1}{\epsilon}\right)\right)$, $\beta = \frac{2\mu s_r}{nq}$.

Recovery guarantee of EAPT

Theorem 5.5 (Exact recovery of Algorithm 4). Under the assumption of Proposition 5.3 except that $\alpha \lesssim \min\{\frac{1}{\mu s_r^2 \kappa^3}, \frac{q^{0.5}}{\mu^{1.5} s_r^2 \kappa^2}, \frac{q^{0.5}}{\mu^2 s_r^2 \kappa}\}^1$, for any $\epsilon > 0$, we have $\|\mathcal{L}_T - \mathcal{L}^*\|_{\infty} \leq 8\alpha \epsilon$ and $\|\mathcal{S}_T - \mathcal{S}^*\|_{\infty} \leq \epsilon/nq$ with $T = \mathcal{O}(\log(1/\epsilon))$, $\beta = \mu s_r/2nq$.

Comparison with other methods

	effectiveness	(recov	ery performance)	efficiency (optimization time)						
t-SVD methods	transformed	rank	recovery	convergence	iteration complexity					
			guarantee	rate	FFT	DCT				
TRPCA (Lu et al., 2019)	Х	tubal	✓	$\mathcal{O}(1/\epsilon)$	$\mathcal{O}\left(n^2q\log q + n^3q\right)$	_				
ETRPCA (Gao et al., 2020)	Х	tubal	×	×	$\mathcal{O}\left(n^2q\log q + n^3q\right)$	_				
T-TRPCA (Lu, 2021)	✓	tubal	✓	$\mathcal{O}(^1\!/_{\epsilon})$	_	$\mathcal{O}(n^2q^2 + n^3q)$				
APT	✓	multi	✓	$\mathcal{O}\left(\log(1/\epsilon) ight)$	$\mathcal{O}(n^2q\log q + n^3q)$	$\mathcal{O}(n^2q^2 + n^3q)$				
EAPT	✓	multi	✓	$\mathcal{O}\left(\log(1/\epsilon) ight)$	$\mathcal{O}(n^2 q \log q + n^2 s_r)$	$\boxed{\mathcal{O}(n^2q^2+n^2s_r)}$				

- Our methods have linear convergence rate and recovery guarantee
- Our methods can make use of information in the frequency domain
- EAPT has less iteration complexity

Experiments: synthetic data

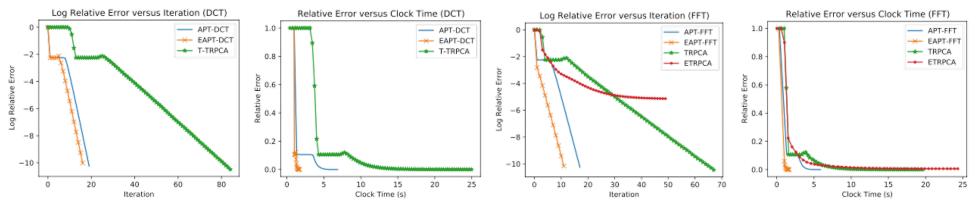


Figure 1. Comparison between different t-SVD based tensor RPCA methods.

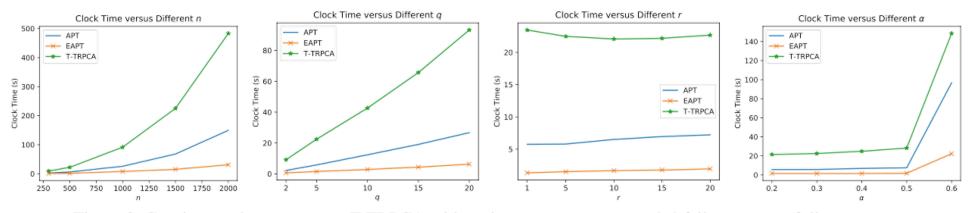


Figure 2. Consistent advantages over T-TRPCA with various parameters. $\alpha = 0.6$ fails to successfully recovery.

Experiments: real data

apply smaller rank to high frequency term

	T	Γ	Tucker		CP		CP		CP		t-SVD										
	TTNN					tomic Norm				KBR-TRPCA				T-TRPCA				EAPT-FFT			
	PSNR	Time	PSNR	Time	PSNR	Time	PSNR	Time	PSNR	Time	PSNR	Time	PSNR	Time	PSNR	Time	PSNR	Time	PSNR	Time	
toys	29.39	85.4	28.47	297.3	16.96	223.1	24.18	368.6	36.11	305.8	34.04	63.6	34.09	75.5	38.47	121.7	39.95	<u>36.5</u>	41.87	35.8	
feathers	29.00	84.5	28.00	297.8	17.89	331.4	24.42	486.8	36.23	189.9	31.62	59.9	31.36	70.7	36.72	120.8	38.01	33.4	39.61	32.3	
sponges	36.90	83.3	37.38	305.1	19.48	337.4	28.24	249.8	44.16	227.8	31.52	59.9	30.28	70.8	34.81	122.2	38.88	33.6	40.05	22.5	
watercolors	28.74	85.9	28.31	284.7	18.33	377.2	23.49	353.1	35.77	316.4	36.28	61.6	36.3	71.3	40.59	121.6	41.43	34.2	41.66	35.9	
paints	30.35	83.1	30.33	291.5	18.98	336.0	25.16	457.5	32.20	248.6	33.83	61.1	33.72	71.5	38.15	123.7	<u>39.45</u>	34.3	39.53	<u>35.6</u>	
sushi	31.60	84.0	31.57	312.2	17.42	320.9	29.96	492.3	36.03	187.8	33.40	62.5	33.50	72.5	35.67	120.3	36.03	36.3	39.30	32.3	

Results about HSI denoising

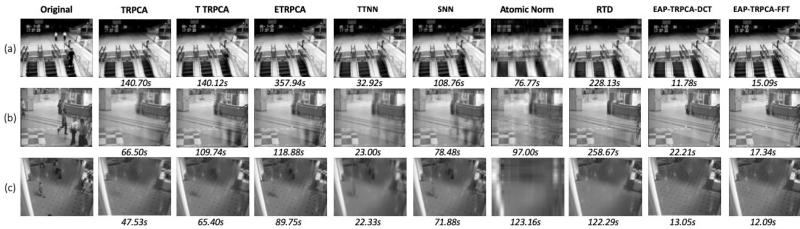


Figure 3. Video background subtraction results of different methods and their corresponding reconstruction clock time. (a) Escalator with 200 frames; (b) Hall with 100 frames; (c) ShoppingMall with 50 frames.

Conclusion

- We propose two alternating projection algorithms for tensor RPCA. Specifically, EAPT is more efficient since it uses the tangent space of low-rank tensor to reduce iteration complexity.
- Linear convergence to the ground-truth can be guaranteed under suitable tensor incoherence conditions.
- Experiments on synthetic data and real data demonstrate both efficiency and effectiveness of our methods.

Thank you!