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Background

* Robust Principle Component Analysis (RPCA)

* recover a low-rank matrix L* from highly corrupted measurements M =
L + 5" where S™ is a sparse matrix

* optimization objective ,

min|({(M — L —§
nin|| I

s.t. rank(L) <,
|Is1] ;< M.

* convex surrogate

nLl’iSn||L||* +/1||S||1

s.t. M=L+S



Background

* Tensor decomposition
* Transformed t-SVD is used for our method, because it can model tensor
IN both the time domain and frequency domain

* Time domain
* equivalent to the low rank of tensor's mode-1 unfolding matrix

* Frequency domain
* noises are concentrated in high frequency term
* Other decompositions such as CP / Tucker cannot model tensor in both time
and frequency domain and do not have best low rank approximation

* right tensor has lower rank than the left tensor

* noise will be transformed into high frequency
term in frequency domain

* applying smaller rank to high frequency term
will further improve performance




Tensor RPCA (TRPCA)

* Recover a low-rank tensor L* € R4 from highly corrupted
measurements D = L + 5™ where 7 Is a sparse tensor

minﬁe&,SeS HD — L — SH%

L = {X |rank,,(X) < 7},

subject to
{S ={X||X[o < K}

* Convex method based on Transformed t-SVD with recovery
guarantee (Lu, et al. 2019)

r£11§1 |L||e+ + A||S]|1, subjectto D = L + S.



Alternating Projection TRPCA (APT)

Optlmlzatlon ObJeCtIVG * Low-rank space projection
Liy1 = P (D — Sk)
minger ses ||D — £ — SH}Z:, * truncated t-SVD (high computational complexity)
L = {X |I'ank7n(X ) S ’r}, §2:;i26?1.;-.SgDXof:XZ./{gj}ife?}:(JX ) fo(%;n ;ijpll)smﬂ;i

mation having multi-rank r: that is,

subject to
{S = {X]]|X]lo < K}

Ko, 50) =Up(5,1:73)Se(1: 7,1 ri,i)quI(:, 1:7;,4).

« APT alternatively projects between low-rank Then, Hy (%) i the best multi-rank r approximation to ¥
space IL and sparse space S

: — : * Sparse space projection
Algorithm 2 APT: Alternating Projection Algorithm for « hard thresholding
Tensor RPCA

1: Run Algorithm 1 for initialization Skv1 = T, (D — Li41)
cfork=0toT —1do
Lii1 =P, (D — Sk)
Sey1 = T, (D — Lry1) where (o1 =
By*51(D — Sk)
end for
: Return: £ and St

el o
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Efficient Alternating Projection TRPCA (EAPT)

Proposition 4.2. Projection of Pr(Z) onto low multi-rank

* less computational comBIexity on low-rank space LL can be executed by
space projection than APT

* apply a tangent space projection before
projecting the residue onto the low-rank space

H
PLoPr(2)=[U Q1] os PL(M)os lgéi} ,  (6)

] ) _ _ where
* Low-rank space projection
p p J M _ I/{H OQZOQV Rg €R27.X27.Xq
Liy1=P.oPr (D — S) - Ry 0 ’
* truncated t-SVD on a smaller tensor of size "
2rx2rxXq (original size nXnXxgq, r is tensor tubal Q10 R1 = (Lo — U0 U7 )0 Z0g V and Q306 Ro =
rank) (Zp — V 03 V) 04 Z og U are t-QR (Theorem B.2).
Algorithm 4 EAPT: Efficient Alternating Projection Algo-
rithm for Tensor RPCA

1: Run Algorithm 1 for initialization

2: fork=0toT — 1do

3. Ly = Trim(Ly, p)

4 Lry1=PFP.o Pr, (D — Sk)

50 Sk+1=T¢,., (D — Li41) where (41 is in (7)
6: end for

7: Return: L1 and St




Initialization of APT and EAPT

* Goal

* construct an initial guess that iIs sufficient close to the ground truth and is
Inside the "basin of attraction”

* [nitialization algorithm

Algorithm 1 Initialization
1: §_1 = TC—l(D) where (_1 = Binit - 5’1(D)
2: E() = P]L(D - S_l)
3: Sy = TCO (D - [:0) where (p = 3y - 5’1(D — 8_1)
4: Return: £y and Sy

* Ly and &g are the initialization values for both APT and EAPT



Theoretical results

* Some assumptions:

* assumption for low-rank tensor
(incoherence)

Assumption 5.1. Given the transformed ¢-SVD of a tensor
L =Uop Xop V¥ € R™™4 with multi-rank r, £ is
said to satisfy the tensor incoherent condition, if there exists
p¢ > 0 such that

Tensor-column: 2 max U o é;||% < p;

Syr i€[n]

ng : :
Tensor-row: — max ||V o é;||% < p.
Sr j€n]

* assumption for sparse tensor

Assumption 5.2. A sparse tensor § € R™*"*9 is a-sparse,
ie., |S(:,4,:)|lo<angand ||S(i,:,:)||o <ang for i € [n].

* Guarantee for the Initialization close to ground truth

Proposition 5.3 (Algorithm 1 for initialization). Assume
that a low multi-rank r tensor L™ satisfies Assumption 5.1
and a sparse S* satisfies Assumption 5.2 with ap <

P& For hyperparameters obeying nqe1(D) < Binir <
3puscd1(L7) And By = HSr - isfy
nao: (D) and 3y = b the outputs of Algorithm 1 satisfy

I€ ~ Lol| < 8aps:a1(L") and ||S — Sol|oe < “2251(L7).

* Recovery guarantee of APT

Theorem 5.4 (Exact recovery of Algorithm 2). Under the
assumption of Proposition 5.3, for any ¢ > 0, we have
|Ly — L7 < 8aeand ||St — 8 || < 4¢/ngwith T =
O (lOg (1/6)) ,,'3 = 21‘37'/nq.

* Recovery guarantee of EAPT

Theorem 5.5 (Exact recovery of Algorithm 4). Under
the assumption of Proposition 5.3 except that < min{
1/;1-5;2,&3, qovs/ul“r’sffcz, q()‘s/pzs;z,n}l,for any € > 0, we have
||£T — E*”oc < 8wae and ||ST — S*||:>o < E/’nq with
T=0 (IOg (1/6)) ) ﬁ = H’Sv‘/2nq.



Comparison with other methods

effectiveness (recovery performance) efficiency (optimization time)
t-SVD method i i i
me S transformed | rank recovery convergence iteration complexity
guarantee rate FFT DCT
TRPCA (Lu et al., 2019) X tubal v O(Ye) | O (n’*qlogq+n’q) —
ETRPCA (Gao et al., 2020) X tubal X X O (n*qlogq + n’q) —
T-TRPCA (Lu, 2021) v tubal v O(1/e) — O(n*q* + n’q)
APT v multi v O (log(1/e)) | O(n*qlogq+ n’q) | O(n*q* +n’q)
EAPT v multi v O (log(/e)) | O(n’qlog g + n’s,) | O(n*q* + n’s,)

* Our methods have linear convergence rate and recovery guarantee
* Our methods can make use of information in the frequency domain
* EAPT has less iteration complexity



Experiments: synthetic data
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Figure 1. Comparison between different t-SVD based tensor RPCA methods.
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Figure 2. Consistent advantages over T-TRPCA with various parameters. @ = 0.6 fails to successfully recovery.
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Expe r| MENTS: rea ‘ d ata apply smaller rank to high frequency term

TT Tucker CP Cp CP -SVD
TTNN SNN Atomic Norm RTD KBR-TRPCA| TRPCA | T-TRPCA | ETRPCA | EAPT-FFT |[EAPT-DCT
PSNR|Time|PSNR | Time [PSNR| Time |PSNR|Time |PSNR| Time [PSNR|Time|PSNR|Time|[PSNR | Time [PSNR|Time|PSNR|Time
toys 20.39|85.4|28.471(297.3/116.96| 223.1 |24.18 1368.6/36.11| 305.8 |34.04 | 63.6|34.09(75.5/38.47(121.7|39.95/36.5/41.87|35.8
feathers |29.00|84.5|28.00(297.8/17.89| 331.4 |24.42 |486.8/36.23| 189.9 131.62(59.9|31.36|70.7|36.72/120.8(38.01 | 33.4(39.61|32.3
sponges |36.90|83.3|37.38(305.1/19.48 | 337.4 | 28.24 |249.8|44.16 | 227.8 | 31.52|59.9|30.2870.8 | 34.81 |122.2| 38.88 | 33.6 | 40.05 | 22.5
watercolors| 28.74 | 85.9 [ 28.31 |284.7| 18.33 | 377.2 | 23.49(353.1|35.77| 316.4 |36.28 | 61.6| 36.3 [71.3/40.59/121.6/41.43 | 34.2|41.66|35.9
paints |[30.35|83.130.33(291.5/18.98 | 336.0 | 25.16 /457.5/32.20| 248.6 |33.83 | 61.1 |33.72|71.5|38.15|123.7(39.45 | 34.3 [39.53 | 35.6
sushi 31.60|84.0/31.57|312.2/17.42| 320.9 | 29.96 |492.3(/36.03 | 187.8 | 33.40|62.5(33.50|72.5/35.67|120.3/36.03|36.3/39.3032.3

Results about HSI denoising

Original TTRPCA ETRPCA TTNN SNN Atomic Norm EAP-TRPCA-DCT EAP-TRPCA-FFT

47.53s X
Figure 3. Video background subtraction results of different methods and thelr correspondmg reconstructlon clock nme. (a) Escalator with

200 frames; (b) Hall with 100 frames; (c) ShoppingMall with 50 frames.
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Conclusion

* We propose two alternating projection algorithms for tensor
RPCA. Specifically, EAPT i1s more efficient since it uses the tangent
space of low-rank tensor to reduce iteration complexity.

* Linear convergence to the ground-truth can be guaranteed under
sultable tensor incoherence conditions.

* Experiments on synthetic data and real data demonstrate both
efficiency and effectiveness of our methods.



Thank you!



