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Backgrouna

1. Molecular generation is important but hard
2. Most previous work:
* Pocket-free generation
* Molecular representation: 1D SMILES or 2D graph

Generating 3D molecules that bind to protein pockets

Protein Pocket 3D Molecule




Methods

Generation Procedure

The generation is auto-regressive and includes four steps
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Methods

Generation Model Architecture
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Methods

Generation Model Architecture

1. E(3)-equivariant network
« Atoms and edges are represented by scalar and vector features
« Utilize Geometric Vector Perceptron and Vector Neuron to
design equivariant building blocks

2. Direct generation of atom positions
» Use Vector features and Gaussian Mixture Model to predict the
atom positions

3. Joint Prediction of atom element and bonds



Generation Model Training

Randomly mask Train the model to
molecular atoms recover atoms

Model
Prediction




Results

Baselines:
CVAE (Masuda et al., 2020): 3D CNN + CVAE
AR (Luo et al., 2021): auto-regressive model
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Better drug-likeness and vina score



Results

Sub-structure Analysis

Table 2. The ratio of the molecules containing different rings in
the datasets and those generated by different methods.

. . A
Ring | Train  Test Pocket2
Size Set Set CVAE AR Mol :

30034 0033 0361 0484 : 0.002 |

4 0.005 0.000 0.248 0.005 I 0.000 I

5 0.572 0.475 0.397 0.276 0.415 I

6 0.903 0.833 0.300 0.693 I 0.885 I

7 0.028 0017 0044 0.033 | 0076

8 0.001 0.000 0.014 0.007 | 0.007 I

9 0.000 0.000 0.006 0.006 | 0.002_'|
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Figure 4. The distributions of RMSD of the generated 3D molecu-

lar structures.

More realistic
sub-structures

Better local
conformation

Better global
conformation

Table 3. The KL divergence of the bond angles and dihedral angles
with the test set. The lower letters represent the atoms in the

aromatic rings. T TN
Val. Test. IPocketZ |
Set set | CVAE AR Nl
ccec o012 000 | 708 1.80 & 097 |
cco | 010 000 | 758 202 ! 095 |
CNC | 011 000 774 286 | 049
OPO | 0.10 000 | 472 206 | 023
NCC | 0.09 000 | 786 255 | 0.95 I
CC=0 | 0.07 000 | 741 290 | 076
COC | 0.12 000 | 632 38 024 |
CCCC | 0.14 000 | 059 078 | 071 !
ccec | 0.08 000 | 791 1064 449 |
CCCO | 0.55 0.00 | 094 1.3 056 |
occo | 1.o1 000 | 192 185 | 156 |
Ccec | 028 000 | 578 791 | 285
CC=CC | 0.68 0.00 | 496 7.07 | 409




Conclusion

1. We proposed Pocket2Mol to efficiently generate 3D molecules
directly binding to the given 3D protein pockets.

2. The generated molecules show better chemical properties and more
reasonable structures / conformations.
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