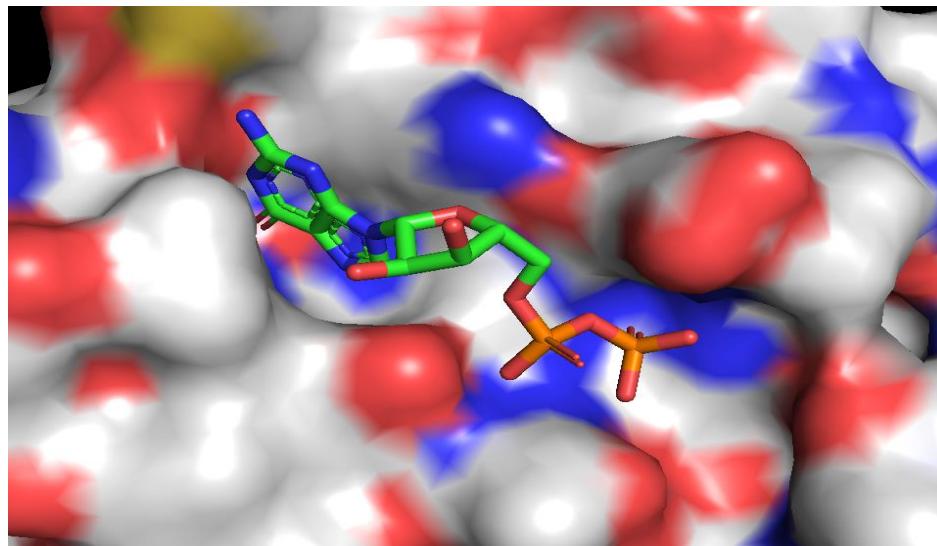

Pocket2Mol: Efficient Molecular Sampling Based on 3D Protein Pockets

Xingang Peng¹ Shitong Luo² Jiaqi Guan³ Qi Xie⁴ Jian Peng^{2,3,5} Jianzhu Ma^{2,6,7}



Content

1. Background

2. Methods

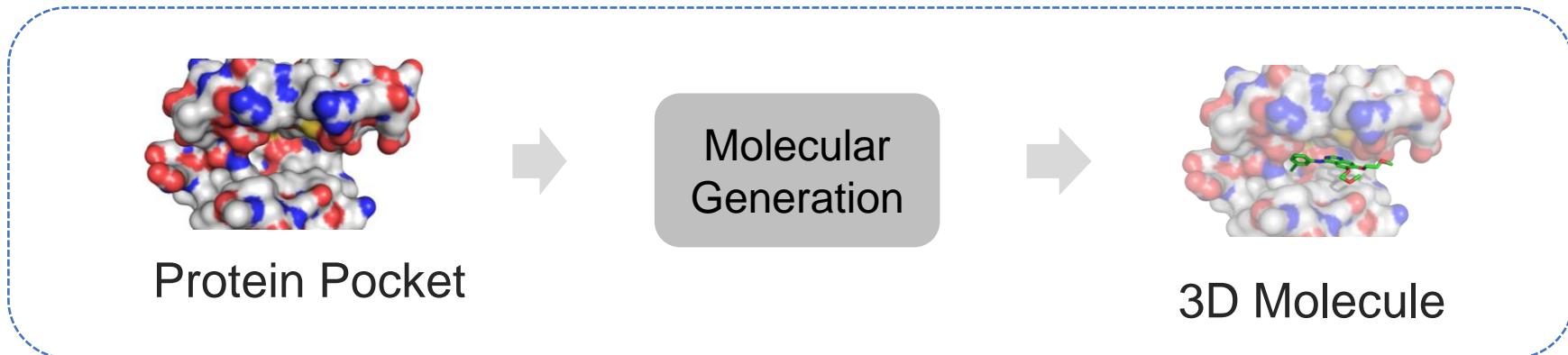
3. Results

4. Conclusion

Background

1. Molecular generation is important but hard
2. Most previous work:
 - Pocket-free generation
 - Molecular representation: 1D SMILES or 2D graph

Generating 3D molecules that bind to protein pockets

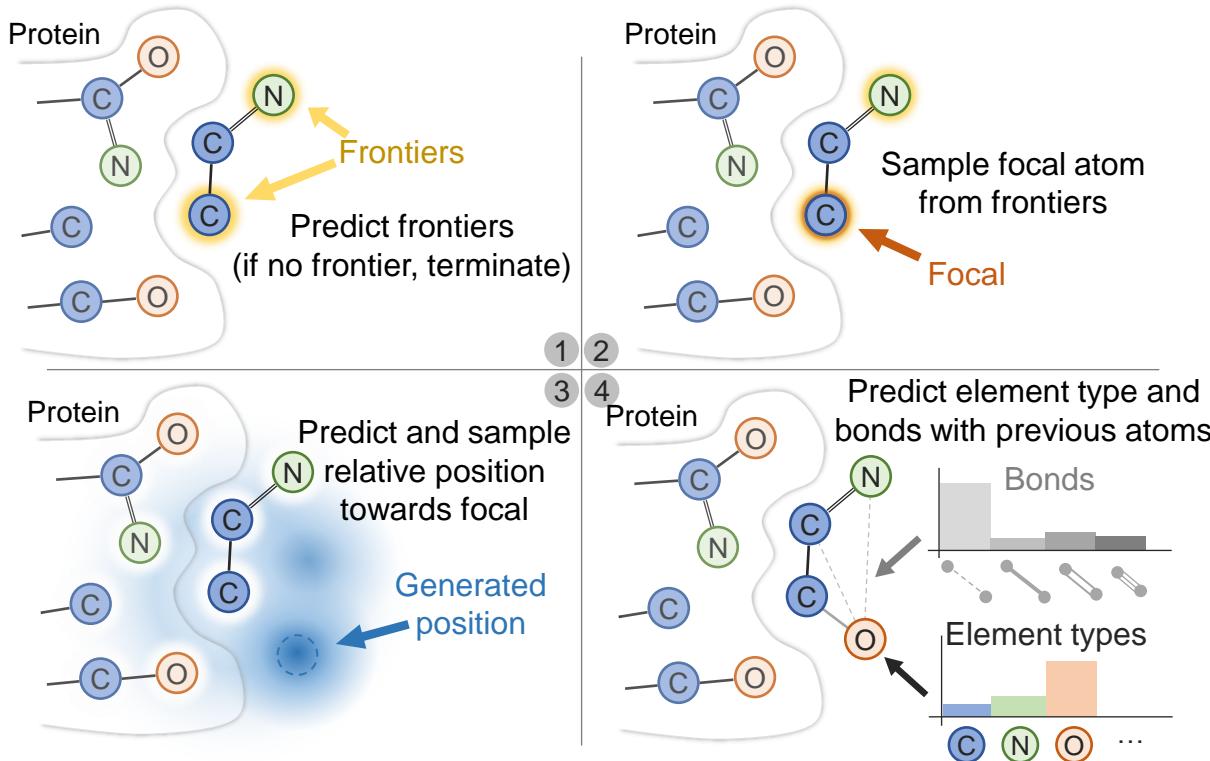


Methods

Generation Procedure

| Generation Model Architecture | Generation Model Training

The generation is **auto-regressive** and includes **four steps**

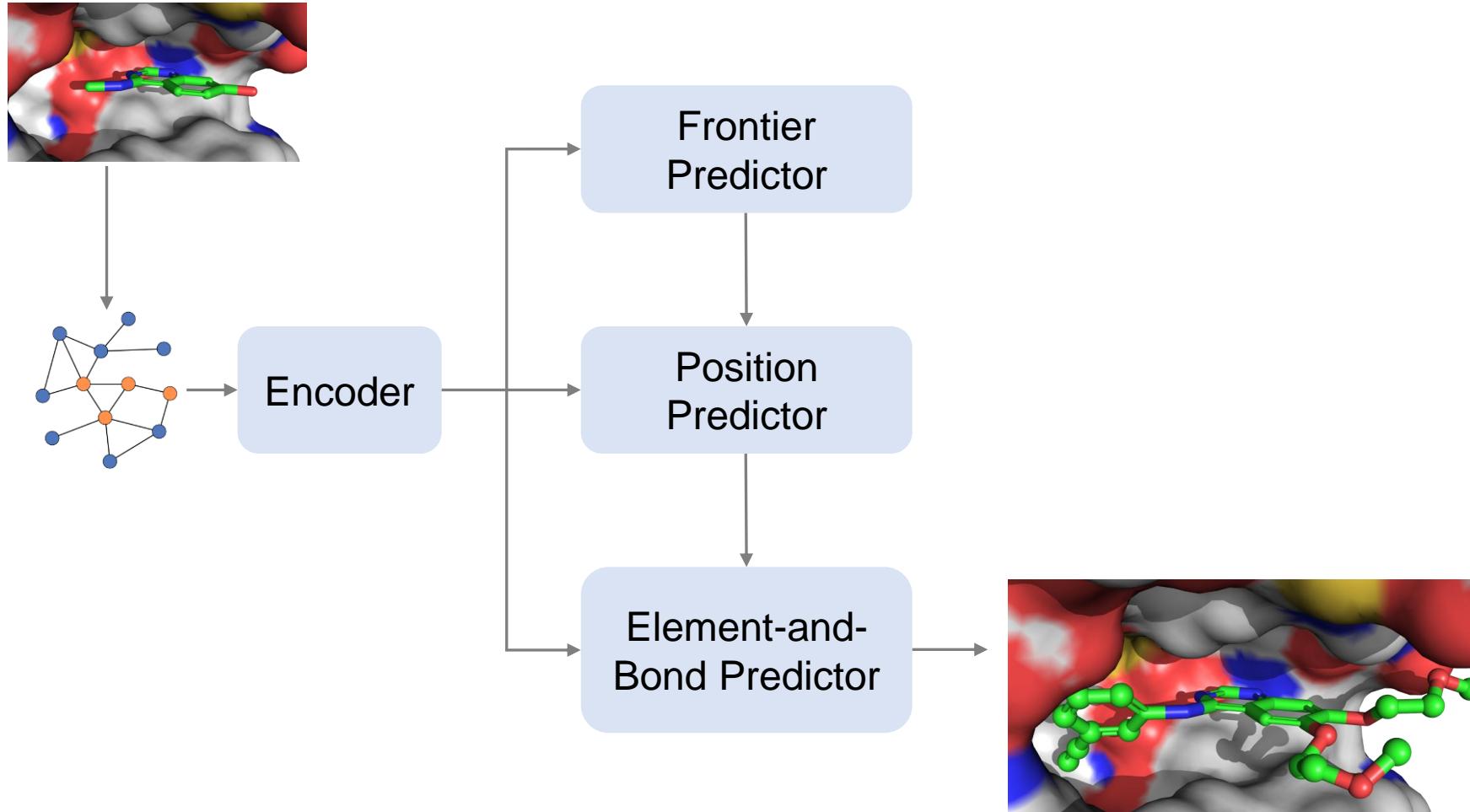


Methods

Generation Procedure |

Generation Model Architecture

| Generation Model Training



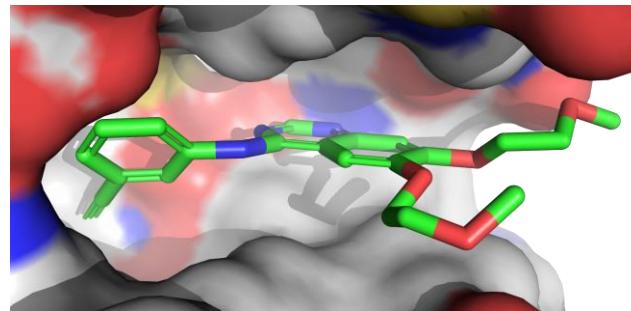
Methods

Generation Procedure | **Generation Model Architecture** | Generation Model Training

1. E(3)-equivariant network
 - Atoms and edges are represented by **scalar and vector** features
 - Utilize **Geometric Vector Perceptron** and **Vector Neuron** to design equivariant building blocks
2. Direct generation of atom positions
 - Use **Vector features** and **Gaussian Mixture Model** to predict the atom positions
3. Joint Prediction of atom element and bonds

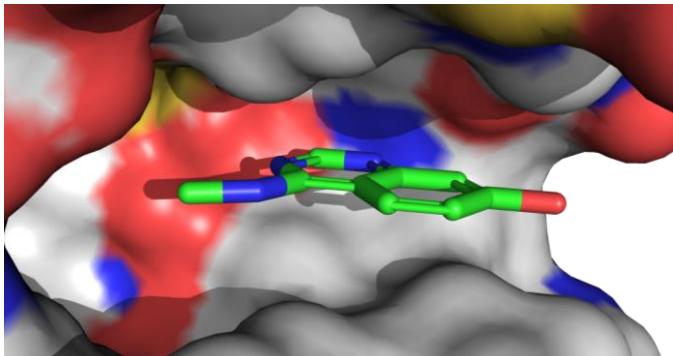
Methods

Generation Procedure | Generation Model Architecture | **Generation Model Training**

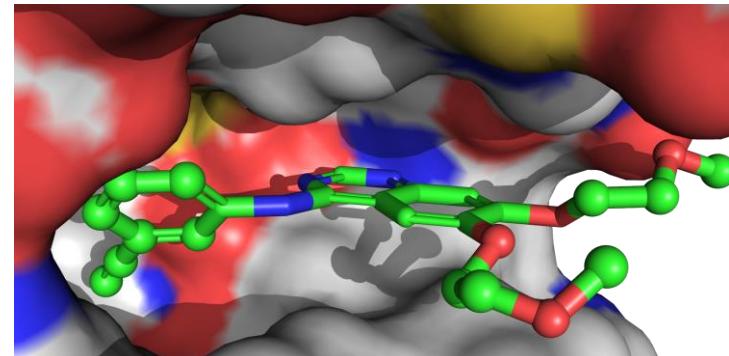


Randomly **mask**
molecular atoms

Train the model to
recover atoms



Model
Prediction



Results

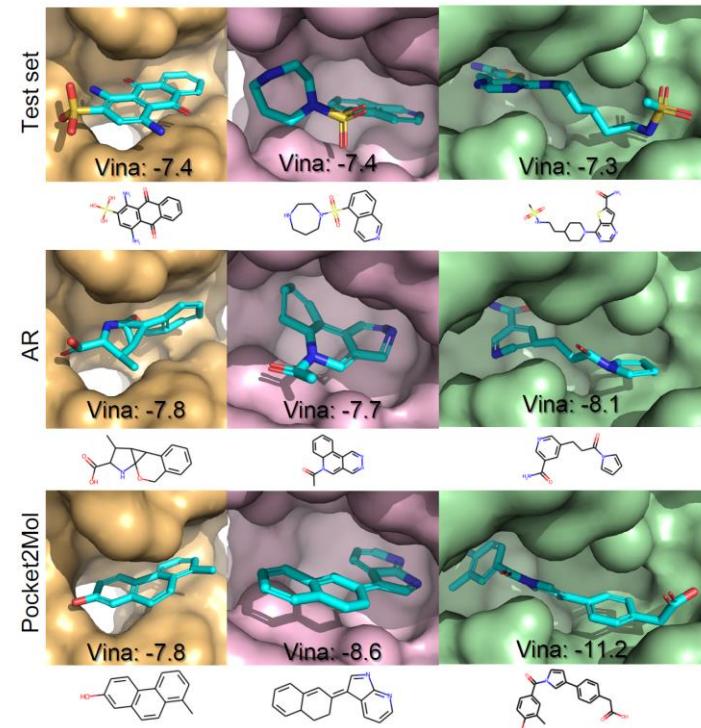
Baselines:

CVAE (Masuda et al., 2020): 3D CNN + CVAE

AR (Luo et al., 2021): auto-regressive model

	Test Set	CVAE	AR	Pocket2 Mol
Vina Score (kcal/mol, ↓)	-7.158 ± 2.10	-6.144 ± 1.57	-6.215 ± 1.54	-7.288 ± 2.53
High Affinity (↑)	-	0.238 ± 0.28	0.267 ± 0.31	0.542 ± 0.32
QED (↑)	0.484 ± 0.21	0.369 ± 0.22	0.502 ± 0.17	0.563 ± 0.16
SA (↑)	0.732 ± 0.14	0.590 ± 0.15	0.675 ± 0.14	0.765 ± 0.13
LogP	0.947 ± 2.65	-0.140 ± 2.73	0.257 ± 2.01	1.586 ± 1.82
Lipinski (↑)	4.367 ± 1.14	4.027 ± 1.38	4.787 ± 0.50	4.902 ± 0.42
Sim. Train (↓)	-	0.460 ± 0.18	0.409 ± 0.19	0.376 ± 0.22
Diversity (↑)	-	0.654 ± 0.12	0.742 ± 0.09	0.688 ± 0.14
Time (s, ↓)	-	-	19658.56 ± 14704	2503.51 ± 2207

Better drug-likeness and vina score



Results

Sub-structure Analysis

Table 2. The ratio of the molecules containing different rings in the datasets and those generated by different methods.

Ring Size	Train Set	Test Set	CVAE	AR	Pocket2 Mol
3	0.034	0.033	0.361	0.484	0.002
4	0.005	0.000	0.248	0.005	0.000
5	0.572	0.475	0.397	0.276	0.415
6	0.903	0.833	0.300	0.693	0.885
7	0.028	0.017	0.044	0.033	0.076
8	0.001	0.000	0.014	0.007	0.007
9	0.000	0.000	0.006	0.006	0.002

More realistic sub-structures

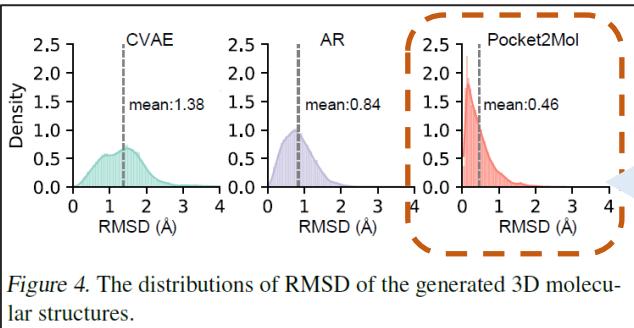


Figure 4. The distributions of RMSD of the generated 3D molecular structures.

Table 3. The KL divergence of the bond angles and dihedral angles with the test set. The lower letters represent the atoms in the aromatic rings.

	Val. Set	Test. Set	CVAE	AR	Pocket2 Mol
CCC	0.12	0.00	7.08	1.80	0.97
CCO	0.10	0.00	7.58	2.02	0.95
CNC	0.11	0.00	7.74	2.86	0.49
OPO	0.10	0.00	4.72	2.06	0.23
NCC	0.09	0.00	7.86	2.55	0.95
CC=O	0.07	0.00	7.41	2.90	0.76
COC	0.12	0.00	6.32	3.88	0.24
CCCC	0.14	0.00	0.59	0.78	0.71
cccc	0.08	0.00	7.91	10.64	4.49
CCCO	0.55	0.00	0.94	1.23	0.56
OCCO	1.01	0.00	1.92	1.85	1.56
Cccc	0.28	0.00	5.78	7.91	2.85
CC=CC	0.68	0.00	4.96	7.07	4.09

Better local conformation

Better global conformation

Conclusion

1. We proposed Pocket2Mol to efficiently generate **3D molecules** directly binding to the given **3D protein pockets**.
2. The generated molecules show better **chemical properties** and more reasonable **structures / conformations**.

Thank You!
