Fisher SAM

Information Geometry & Sharpness Aware Optimisation

Minyoung Kim

Coauthors: Da Li, Shell Xu Hu, Timothy Hospedales

Flat Minima in Deep Learning

In many cases,

 $DL \rightarrow Minimising a loss function <math>l(\theta)$

Highly non-convex (many local minima)

- Q) Which is better, θ_A or θ_B ?
- A) We prefer θ_A to θ_B even though $l(\theta_A) > l(\theta_B)$

Why? Because θ_A is more robust.

Imagine some perturbation: $\theta_A \to \theta'_A$, $\theta_B \to \theta'_B \Rightarrow l(\theta'_A) \ll l(\theta'_B)$

Let's seek for a Flat Minimum


```
Flat minima = Robust models
```

= Resilient to data noise or model corruption (often encountered in Al applications)

But, how?

Sharpness-Aware Minimization (SAM) (Foret et al, 2021)

Idea of SAM:

Define a robust loss $l^R(\theta)$ as worst-case loss within a neighborhood of θ

$$l^{R}(\theta) = \max_{\epsilon \in N_{\theta}} l(\theta + \epsilon)$$
Neighborhood around θ

SAM^(Foret et al, 2021) is Efficient

Computing $\nabla l^R(\theta)$ only amounts to evaluating two gradients!

$$l^{R}(\theta) = \max_{\epsilon \in N_{\theta}} l(\theta + \epsilon)$$
Neighborhood around θ

But, SAM has an Issue

It's about the **Euclidean neighborhood** in SAM:

$$l^{R}(\theta) = \max_{\epsilon \in N_{\theta}} l(\theta + \epsilon) \qquad N_{\theta} = \{\epsilon : ||\epsilon|| \le \gamma\}$$

But the parameter space is usually not Euclidean!

- $l(\theta)$ depends on θ through $p(y|x,\theta)$, eg, $l(\theta) = \mathbf{E}_{x,y}[-\log p(y|x,\theta)]$
- The distance measure $d(\theta, \theta')$ is **Fisher information metric**:

$$d(\theta, \theta') \propto \frac{||\theta - \theta'||}{(\text{for } \theta \approx \theta')} \propto \frac{||\theta - \theta'||}{(\theta - \theta')^{\top} F(\theta)(\theta - \theta')} \qquad F(\theta) = \mathbf{E}_{x,\theta} [\nabla \log p(y|x,\theta) \nabla \log p(y|x,\theta)^{\top}]$$

(Approximated by **Diagonal Empirical Gradient-Magnitude**)

(Our Approach) Fisher SAM

Idea: Use Fisher-driven neighborhood instead of Euclidean

$$l_{FSAM}(\theta) = \max_{\epsilon^{\mathsf{T}} F(\theta) \epsilon \le \gamma^2} l(\theta + \epsilon)$$

$$\nabla l_{FSAM}(\theta) \approx \nabla l(\theta + \epsilon^*)$$

$$\epsilon_{FSAM}^* \approx F(\theta)^{-1} \nabla l(\theta)$$

$$\gamma \frac{V(\theta)F(\theta)^{-1} \nabla l(\theta)}{\sqrt{V(\theta)F(\theta)^{-1} \nabla l(\theta)}}$$

$$l_{SAM}(\theta) = \max_{||\epsilon||^2 \le \gamma^2} l(\theta + \epsilon)$$

Illustration: 2D Toy Example

$$l(\theta) = -\log \left(\alpha_1 e^{-E_1(\theta)/\beta_1^2} + \alpha_2 e^{-E_2(\theta)/\beta_2^2} \right), \text{ where}$$

 $E_i(\theta) = \text{KL}(p(x;\theta)||N(x;m_i,s_i^2)), i = 1,2. \quad p(x;\theta) = N(x;\mu,\sigma^2)$

Sharp minimum θ^{sharp} $(l(\theta^{sharp}) = 0.49)$

(Our) Fisher SAM

(Competitor) SAM^(Foret et al, 2021)

Results on Image Classification

- Compare generalisation performance of:
 - SGD = vanilla (non-robust) optimization
 - SAM (Foret et al. 2021) = robust optim w/ Euclidean-ball neighborhood
 - ASAM (Kwon et al. 2021) = robust optim w/ parameter-scaled neighborhood
 - FSAM = proposed Fisher SAM (Fisher info neighborhood)

(Datasets = CIFAR-10/100 / 8 different neural networks)

Table 1 Ta	est accuracies on	CIEAR_10 and	CIEAR_100
Table 1. It	SSE ACCUITACIES OII	CIPAR-10 and	CIPAN-100.

	CIFAR-10			CIFAR-100				
	SGD	SAM	ASAM	FSAM	SGD	SAM	ASAM	FSAM
	$91.83^{\pm0.13}$			92.81 ^{±0.17}		$72.83^{\pm0.01}$	$73.10^{\pm0.23}$	73.15 ^{±0.33}
	$92.91^{\pm0.13}$			93.18 ^{±0.11}		$68.61^{\pm0.26}$	$68.68^{\pm0.11}$	69.04 ^{±0.30}
	$95.37^{\pm0.06}$		$95.63^{\pm0.07}$	95.71 ^{±0.08}	$75.52^{\pm0.27}$	$76.44^{\pm0.26}$	$76.32^{\pm0.14}$	76.86 ^{±0.16}
VGG-19-BN	$95.70^{\pm0.09}$	$96.11^{\pm0.09}$	$95.97^{\pm0.10}$	96.17 ^{±0.07}			$74.36^{\pm0.19}$	77.86 ±0.22
ResNeXt-29-32x4d					$79.36^{\pm0.19}$	$82.63^{\pm0.16}$	$82.41^{\pm0.31}$	$82.92^{\pm0.15}$
WRN-28-2	$95.56^{\pm0.22}$	$96.28^{\pm0.14}$	$96.25^{\pm0.07}$	96.51 ^{±0.08}	$78.85^{\pm0.25}$	$79.87^{\pm0.13}$	$80.17^{\pm0.14}$	$80.22^{\pm0.26}$
WRN-28-10	$97.12^{\pm0.10}$		$97.63^{\pm0.04}$	97.89 ^{±0.07}	$83.47^{\pm0.21}$	$85.60^{\pm0.05}$	$85.20^{\pm0.18}$	85.60 ^{±0.11}
PyramidNet-272	$97.73^{\pm0.04}$	$97.91^{\pm0.02}$	$97.91^{\pm0.01}$	97.93 ^{±0.04}	$83.46^{\pm0.02}$	$85.19^{\pm0.04}$	$85.05^{\pm0.11}$	86.93 ^{±0.14}

Transfer Learning

- Setup
 - From the vision transformer model (ViT-base) pretrained on ImageNet,
 - We finetune the model on CIFAR-10 with different losses (SGD/SAM/FSAM)
- Results (test accuracy %)

SGD	SAM (Foret et al)	ASAM (Kwon et al)	FSAM (Ours)
87.97 ± 0.12	87.99 ± 0.09	87.97 ± 0.08	$\textbf{88.39} \pm \textbf{0.13}$

Robustness to Data Noise

- Injecting label noise (perturbing the loss)
 - We inject label noise by randomly flipping class labels in training data
 - Different noise levels: 20/40/60/80%
- Check which of SGD, SAM, ASAM, and FSAM is the most robust
- Backbones: ResNet-32 Datasets: CIFAR-10

Table 2. Test accuracies on CIFAR-10 with label noise.

Noise rate	SGD	SAM	ASAM	FSAM
0.2	$87.97^{\pm0.04}$	$93.12^{\pm0.24}$		$93.03^{\pm0.11}$
0.4	$83.60^{\pm0.59}$	$90.54^{\pm0.19}$	$88.47^{\pm0.06}$	$90.95^{\pm0.17}$
0.6	$76.97^{\pm0.31}$	$85.39^{\pm0.52}$		$85.76^{\pm0.21}$
0.8	$66.32^{\pm0.27}$	$74.31^{\pm 1.02}$	$70.56^{\pm0.27}$	74.66 ^{±0.67}

Robustness to Parameter Perturbation

- Setup
 - After training models with SGD/SAM/FSAM,
 - we adversarially perturb the learned model parameters to see how test accuracy drop.
 - Perturbation magnitude varies (from weak to strong).
 - Backbone = ResNet34,Data = CIFAR-10

Theoretical Justification

The following holds for any θ w.p. at least $1-\delta$ over S

Conclusion

 A novel sharpness-aware loss that respects the underlying (Fisher) geometry of the parameter manifold

Empirical evidence + theoretical bound on generalization error

- Possible future works
 - Combined with natural gradient updates
 - Distributed gradient update (related to Federated Learning)

Thank you! Q&A