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What happens with batch-norm?

• During training, batch statistics are used

• During inference, statistics are approximated 
with an exponential moving average (EMA) 
from training 

• EMA statistics are significantly different to true 
statistics for certain layers

• Depth-wise separable layers more prone to 
this discrepancy

• Full convolutions are less affected by this

KL divergence between EMA and true sample statistics of 
the training dataset. max𝐷!": maximum per-channel, 
𝔼 𝐷!" : average over channels



Overcoming Oscillations in Quantization-Aware Training

Batch normalization re-estimation

• We can estimate correct BN statistics 
after QAT using training data:
• Common practice in stochastic quantization[1, 2]

[1] Peters and Welling, Probabilistic binary neural networks. 2018.
[2] Louizos et al., Relaxed quantization for discretized neural networks. ICLR 2019. 



Overcoming Oscillations in Quantization-Aware Training

Batch normalization re-estimation

[1] Peters and Welling, Probabilistic binary neural networks. 2018.
[2] Louizos et al., Relaxed quantization for discretized neural networks. ICLR 2019. 

• We can estimate correct BN statistics 
after QAT using training data:
• Common practice in stochastic quantization[1, 2]



Overcoming Oscillations in Quantization-Aware Training

Batch normalization re-estimation

• We can estimate correct BN statistics 
after QAT using training data:
• Common practice in stochastic quantization[1, 2]

• BN re-estimation significantly improves 
validation accuracy for MobiletNetV2 

+2.02
+4.53

[1] Peters and Welling, Probabilistic binary neural networks. 2018.
[2] Louizos et al., Relaxed quantization for discretized neural networks. ICLR 2019. 



Overcoming Oscillations in Quantization-Aware Training

Batch normalization re-estimation

• We can estimate correct BN statistics 
after QAT using training data:
• Common practice in stochastic quantization[1, 2]

• BN re-estimation significantly improves 
validation accuracy for MobiletNetV2 

• BN re-estimation reduces variance 
between seeds

• Negligible effect on ResNet18

+2.02
+4.53

[1] Peters and Welling, Probabilistic binary neural networks. 2018.
[2] Louizos et al., Relaxed quantization for discretized neural networks. ICLR 2019. 
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Why are the BN statistics wrongly estimated for certain models?
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• Many weights at threshold à high chance weights change integer assignment

• Possible large change in output distribution (BN statistics):
• Low bit quantization à larger change in quantized value (∼ 1/𝑏!)
• Layers with fewer weights (e.g. DS convs) à larger contribution of individual weights
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What causes the latent weights to be close to the threshold?
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"

ℒ 𝑤 = (𝑤∗ − 𝑞(𝑤))!
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Do oscillations harm more than BN statistics?

•Weights are either stationary or oscillating

• Experiment:
• Stochastically sample all oscillating weights after QAT

• Average sample is on par with baseline

• Best sampled quantized weights have lower train loss 
than baseline

• Binary optimization (AdaRound) of oscillating weights 
further improves

• Oscillating weights prevent the network from 
converging to best local minimum!

MobileNetV2 with 3-bit quantized weights



Additional insights on oscillations

• Learning rate only effects the amplitude, but not the frequency of oscillations

• Oscillations also affect alternatives to STE, e.g. EWGS[4], DSQ[5] etc

• Check our paper for more theoretical insights

Overcoming Oscillations in Quantization-Aware Training

[4] J. Lee, D. Kim, B. H. Network quantization with element- wise gradient scaling. In Conference on Computer Vision and Pattern Recognition (CVPR), 2021.
[5] Gong, R., Liu, X., Jiang, S., Li, T., Hu, P., Lin, J., Yu, F., and Yan, J. Differentiable soft quantization: Bridging full-precision and low-bit neural networks. International Conference on Computer 
Vision (ICCV), 2019. 
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Tracking oscillations

• Oscillation occurs if integer value changes and its direction opposite to its previous one

• We track oscillations using an EMA of oscillations
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• We define an oscillation threshold: 𝑓"#

• For step 𝑡 in training iterations and for each weight:

1. Calculate the EMA oscillation frequency 

2. If frequency exceeds the threshold (𝑓$ > 𝑓"#), we 
freeze that weight

3. Assign optimal value to frozen weights

4. Update EMA of integer weight, 𝐰%&'()*")
$

Iterative weight freezing 
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calculate	EMA	of	int	weights	

calculate 𝑓#
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• Oscillating weights are always close to the quantization 
bin edge

• We regularize weights to force them closer to the centre 
of then bin

𝐿,-./0* =
1
2 𝑞(𝐰) − clip 𝐰, 𝑞.)*, 𝑞.-1 2

3

• Final training objective:  𝐿 = 𝐿"-45 + 𝜆𝐿,-./0*

Oscillation dampening
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dampening ∼30%
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Conclusion

• Oscillating weights are an inherent problem of QAT:

• They corrupt BN statistics

• They prevent model convergence

• We propose two methods for tackling the source of oscillations:

• Oscillations dampening

• Iterative weight freezing

• We achieve SOTA for low-bit quantization of efficient models

Overcoming Oscillations in Quantization-Aware Training
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code
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