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Motivation
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What happens with batch-norm?

* During training, batch statistics are used

 During inference, statistics are approximated
with an exponential moving average (EMA)
from training
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What happens with batch-norm?

* During training, batch statistics are used

Network
- During inference, statistics are approximated Resens iiiiﬂgiﬁﬁii
with an exponential moving average (EMA) ResNet18 layer3.0.conv1
from training MobileNetV2 | Conv3.0 (PW)
MobileNetV2 | Conv3.1 (DW) 55.3782 1.25464
« EMA statistics are significantly different to true MobileNetV2 | Conv3.2 (PW) 0.0065  0.0012
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the training dataset. max Dy, : maximum per-channel,
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« EMA statistics are significantly different to true
statistics for certain layers

* Depth-wise separable layers more prone to
this discrepancy
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What happens with batch-norm?

* During training, batch statistics are used

 During inference, statistics are approximated
with an exponential moving average (EMA)
from training

« EMA statistics are significantly different to true
statistics for certain layers

* Depth-wise separable layers more prone to
this discrepancy

affected by this

Network | Layer | max Dy,

ResNet18 layer1.0.convl
ResNet18 layer1.0.conv2
ResNet18 layer3.0.conv1

MobileNetV2 | Conv3.0 (PW

MobileNetV2 | Conv3.1 (DW) 55.3782 1.25464

MobileNetV2 | Conv3.2 (PW) 0.0065  0.0012
MobileNetV2 | Conv10.0 (PW 0.0037 _ 0.0004

MobileNetV2 | Conv10.1 (DW) | 27.2618  0.2900

MobileNetV2 | Conv10.2 (PW) 0.0267  0.0034

KL divergence between EMA and true sample statistics of
the training dataset. max Dy, : maximum per-channel,
E[Dy, | : average over channels
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« Common practice in stochastic quantization!- 2 Network ‘ Bits ‘ pre-BN

ResNet18 4 | 70.15%-03
ResNet18 69.630-01

MobileNetV?2 71.790-07
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8
MobileNetV2 | 4 | 68.99%%

3

MobileNetV?2 64.97123




Batch normalization re-estimation

* We can estimate correct BN statistics
after QAT using training data:

« Common practice in stochastic quantization!'- 2

* BN re-estimation significantly improves
validation accuracy for MobiletNetV?2
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Batch normalization re-estimation

* We can estimate correct BN statistics
after QAT using training data:

« Common practice in stochastic quantization!'- 2

* BN re-estimation significantly improves
validation accuracy for MobiletNetV?2

* BN re-estimation reduces variance
between seeds

* Negligible effect on ResNet18

Network | Bits | pre-BN  post-BN
ResNet18 ‘ 4 ‘70.150-03 70.20%02

ResNet18 3 | 69.63%90  69.70%%

MobileNetV2 | 8 | 71.79°97 71.89%05

MobileNetV2 | 4 | 68.99%* 71.01%%
MobileNetV2 | 3 | 64972  69.50°%¢| +4.53




Why are the BN statistics wrongly estimated for certain models?
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Many weights are between two integer bins

Latent weights histogram of depth-wise separable convolution from MobilnetNetV2

lower : upper
threshold ol CEAITE threshold

bln centre

« Many weights at threshold - high chance weights change integer assignment

 Possible large change in output distribution (BN statistics):

 Low bit quantization = larger change in quantized value (~ 1/b?%)
« Layers with fewer weights (e.g. DS convs) = larger contribution of individual weights



What causes the latent weights to be close to the threshold?



Oscillating weights in QAT

« Example regression problem:

* Latent weight: %

* Quantized weight: q(w) =s,, - round(w/s,,)

« Objective: min L(w) = (w. = q(w))?
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Example of MobileNetV2 training (last 1000 iterations)

Quantized weights, g(w)

Latent weights, w

Iteration
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* Weights are either stationary or oscillating

o EXperim ent: Method | Train Loss  Val. Acc. (%)
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* Experiment:
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Do oscillations harm more than BN statistics?

* Weights are either stationary or oscillating

* Experiment:

 Stochastically sample all oscillating weights after QAT
» Average sample is on par with baseline

» Best sampled quantized weights have lower train loss
than baseline

of oscillating weights
further improves

* Oscillating weights prevent the network from
converging to best local minimum!

Method | Train Loss  Val. Acc. (%)
Baseline | 1.3566 69.50
SR (mean + std) | 1.35470:0053 69.58%-07

1.3391 69.85

AdaRound 1.3070 70.12

Freezing

MobileNetV2 with 3-bit quantized weights



Additional insights on oscillations

 Learning rate only effects the amplitude, but not the frequency of oscillations
- Oscillations also affect alternatives to STE, e.g. EWGSI#, DSQD! etc

» Check our paper for more theoretical insights

EWGS(a=0.8) DSG(a=5)
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Tracking oscillations

» Oscillation occurs if integer value changes and its direction opposite to its previous one

» We track oscillations using an EMA of oscillations

#oscillations = 50, fgya = 0.62, momentum = 0.1

80
iteration

Overcoming Oscillations in Quantization-Aware Training
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lterative weight freezing

° We deﬂ ne an OSCi I |ati0n th reShOId : fth Algorithm 1 QAT with iterative weight freezing

1: Init: fO < 0,b < 0,A7 < 0, WRyiainy < Wik
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lterative weight freezing

° We deﬂ ne an OSCi I |ati0n th reShOId : fth Algorithm 1 QAT with iterative weight freezing

1: Init: fO < 0,b < 0,A7 < 0, WRyiainy < Wik

 For step t in training iterations and for each weight: 2: fort=1, .., Tdo

Overcoming Oscillations in Quantization-Aware Training



lterative weight freezing

» We define an oscillation threshold: f;,

 For step t in training iterations and for each weight:
1. Calculate the EMA oscillation frequency

Overcoming Oscillations in Quantization-Aware Training

Algorithm 1 QAT with iterative weight freezing

1: Init: fO < 0,b < 0,A7 < 0, WRyiainy < Wik

2: fort=1,..., Tdo
oL

3:  Calculate gradient g* = £=

Optimizer update for weights w’[—b] using g*

t
Wint

t t
Airxt — Wint

of + (sign(A 1)) © (AL #0)

1nt
tem-ot+(1—m)- fi-!

« clip



lterative weight freezing

° We deﬁne an OSCi”ation th reShOId: fth Algorithm 1 QAT with iterative weight freezing
1: Init: fO < 0,b < 0,A7 < 0, WRyiainy < Wik
* For step t in training iterations and for each weight: R AR ,
:  Calculate gradient g = 9%
1. Calculate the EMA oscillation frequency - Optimizer update for weights w'[-¢] using o'
: Wy, < clip
2. If frequency exceeds the threshold (f¢ > fi), we EAEL
. : | of « (sign(A m)) © (AL, #0)
freeze that weight  F e maot 41— -

fori=1,...,Ndo

if f; > fu then

Overcoming Oscillations in Quantization-Aware Training



lterative weight freezing

° We deﬁne an OSCi”ation th reShOId: fth Algorithm 1 QAT with iterative weight freezing
1: Init: fO < 0,b < 0,A7 < 0, WRyiainy < Wik
* For step t in training iterations and for each weight: R AR ,
:  Calculate gradient g = 9%
1. Calculate the EMA oscillation frequency - Optimizer update for weights w'[-¢] using o'
: Wy, < clip
2. If frequency exceeds the threshold (f¢ > fi), we EAEL
. : | of « (sign(A m)) © (AL, #0)
freeze that weight  F e maot 41— -

: fori=1,...,Ndo
3. Assign optimal value to frozen weights © i > fu then

b; + True

t t—1
W, $: {WEMA(int)J
end if

Overcoming Oscillations in Quantization-Aware Training



lterative weight freezing

° We deﬁne an OSCi”ation th reShOId: fth Algorithm 1 QAT with iterative weight freezing
1: Init: fO < 0,b < 0,A7 < 0, WRyiainy < Wik
* For step t in training iterations and for each weight: R AR ,
:  Calculate gradient g = 9%
1. Calculate the EMA oscillation frequency - Optimizer update for weights w'[-¢] using o'
: Wy, < clip
2. If frequency exceeds the threshold (f¢ > fi), we EAEL
. : | of « (sign(A m)) © (AL, #0)
freeze that weight  F e maot 41— -

: fori=1,...,Ndo
3. Assign optimal value to frozen weights © i > fu then

b; + True

t t—1
W, $: {WEMA(int)J

4. Update EMA of integer weight, Wy qing

calculate EMA of int weights

17: end for

Overcoming Oscillations in Quantization-Aware Training
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* Oscillating weights are always close to the quantization lower | upper
bin edge threshold bin centre threshold
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Oscillation dampening

* Oscillating weights are always close to the quantization lower | upper
bin edge threshold bin centre threshold

* We regularize weights to force them closer to the centre
of then bin

1 .
Lgampen = 2 lg(w) — clip(W, min, Gmax) ”12:
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Oscillation dampening

* Oscillating weights are always close to the quantization
bin edge

* We regularize weights to force them closer to the centre
of then bin

1 .
Lgampen = 2 lg(w) — clip(W, min, Gmax) ”12:

* Final training objective: L = Ly + ALgampen

Overcoming Oscillations in Quantization-Aware Training

lower
threshold

bin centre

upper
threshold
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Ablation study |I: dampening strength
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accuracy
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Ablation study |I: dampening strength

Strong dampening reduces oscillations _
MobiletNetV2

Strong dampening closes pre & post-BN
re-estimation accuracy gap

Regulatization | pre-BN  post-BN

Baseline 5= 45| 64.97'%  69.50%%

Strong dampening leads to lower final A=10-% 6=3.7| 65.97152 69.65008
accuracy A=10"% 5§=3.0] 66.99'4  69.96"12
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» Hypothesis: weights cannot move freely X = cos(0,104) | 644719  69.6107

early during training A = cos(0,1073) | 68.79131 70,3706
A = cos(0,1072) | 70.18%1%  70.26%08

» Solution: gradually increase (anneal)
A during training



Ablation study |I: dampening strength

Strong dampening reduces oscillations

Strong dampening closes pre & post-BN
re-estimation accuracy gap

Strong dampening leads to lower final
accuracy

- Hypothesis: weights cannot move freely
early during training

» Solution: gradually increase (anneal)
A during training

Annealing increases both pre & post-BN
re-estimation accuracy

MobiletNetV?2

Regulatization | pre-BN

Baseline  s= 45| 64.97'%

\A=10"% 6=3.7| 65.97152
A=10"3 6=3.0] 66.9914!
A=10"2 5=05| 68.04! 9

A= cos(0,107%) | 64.47'>°
A = cos(0,1073)
A = cos(0,1072)
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Ablation study Il: Freezing threshold

MobiletNetV?2

Method
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| pre-BN  post-BN
| 64.97'%  69.50%%4

fin=0.02

Fu=0.015
fu=0.01

fin=c0s(0.04,0.015)
fin=c0s(0.04,0.01)

68.13%14
69.790-07
69.120-53

69i51"-"
69.97°%

69.969-04
70.130.05
69.18%47

69.969-03
70.330-07




Ablation study Il: Freezing threshold

Low frequency threshold very effective at
reducing oscillations

MobiletNetV?2
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reducing oscillations
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Low frequency threshold closes pre &
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Low frequency threshold very effective at

) o7 MobiletNetV2
reducing oscillations

Method | pre-BN
Baseline §=45 | 64.97'%
fa=0.02 6=1.8 | 68.13%14

Low frequency threshold closes pre &
post-BN re-estimation accuracy gap

- = 0.07
Low frequency threshold leads to lower fa=0.015 0=04 1 69.79

final accuracy fin=0.01 5=05 | 69.12053
fin=c0(0.04,0.015) | 69.51°1°

- Solution: gradually reduce (anneal) fiy, fu= 0s(0.04,0.01) | 69.97>%
during training




Ablation study Il: Freezing threshold

Low frequency threshold very effective at
reducing oscillations

Low frequency threshold closes pre &
post-BN re-estimation accuracy gap

Low frequency threshold leads to lower
final accuracy

» Solution: gradually reduce (anneal) fiy,
during training

Annealing increases both pre & post-BN
re-estimation accuracy

MobiletNetV?2

Method
Baseline
fin=0.02

Fu=0.015
fu=0.01

fin=c0s(0.04,0.015)
fin=c0s(0.04,0.01)

post-BN
69.500-04

69.969-04
70.1309-05
69.18%47




MobileNetV2 - comparison to literature

MobiletNetV2
« We train with LSQIf! and BN re-estimation

Method | W/A | Val. Acc. (%)
» We achieve SOTA for W4A4 and W3A3 Full-precision 3232 717

LSQ* (Esser et al., 2020) 69.5 (-2.3)
* Dampening and freezing preform on par PACT (Choi et al., 2018) 61.4 (-10.3)

DSQ (Gong et al., 2019) 64.8 (-6.9)
EWGS (J. Lee, 2021) 70.3 (-1.6)

. Freezing faster during training than LSQ + BR (Han et al., 2021)
dampening ~30%

LSQ* (Esser et al., 2020)
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Conclusion

* Oscillating weights are an inherent problem of QAT-:

* They corrupt BN statistics

* They prevent model convergence

* We propose two methods for tackling the source of oscillations:

* Oscillations dampening

* Iterative weight freezing

» We achieve SOTA for low-bit quantization of efficient models

Overcoming Oscillations in Quantization-Aware Training
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