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Counterfactual questions

• A patient, Alice, is recommended a treatment X against her disease and
agrees to take it.

• The effectiveness of the treatment has been rigorously established
through a randomised control trial, which found a positive average
causal effect (ACE).

• However, the ACE is an average of treatment efficacy over the whole
population, including some individuals who respond better and others
who respond worse.

• Alice might wonder what her own chances of recovery would have
been, had she not taken X (Heckman, 1992; Shpitser and Pearl, 2009).

• This requires envisioning consequences of a hypothetical change (not
taking the treatment), given that the opposite happened (in reality, she
took it): a counterfactual.
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Empirical content of counterfactuals

• Counterfactuals can be expressed through the framework of
structural causal models (SCMs) (Pearl, 2000).

• However, we typically do not have access to an SCM but only to
observational or experimental data which may be insufficient: In
general, we cannot unambiguously answer counterfactual
questions based on empirical observations.

• We simply cannot perform an experiment where the same
person is both given and not given a treatment, an issue also
referred to as the fundamental problem of causal
inference (Imbens and Rubin, 2015).
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Identifiability of counterfactual expressions

• Pearl (2011): Counterfactual expressions should only be
evaluated when they can be estimated based on empirical
observations→ Identifiability requirement (Shpitser and Pearl, 2007,
2008; Pearl, 2001; Correa et al., 2021).

• When full identification is not achievable, informative bounds
can sometimes still be given based on empirically observable
quantities→ Partial Identification (Balke and Pearl, 1994).

• In these results all the considered variables are jointly
observed (Bareinboim and Pearl, 2016).
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What if the variables are not jointly observed?

• What if we instead have studies involving distinct, but overlapping
subsets of variables?
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• In Alice’s case, suppose that a separate study characterises the
interventional effect of a rare condition Y on her disease.

• Since the condition is rare, and testing for it is costly, there are no
studies characterising the joint effect of X and Y on recovery.

• Could Alice nevertheless make use of the available information on the
effect of Y and combine it with information on X to better answer her
counterfactual question?
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Structural Causal Marginal Problem

Our goal: (Partial) identification of counterfactual models by merging
information from different datasets, involving distinct but
overlapping sets of variables.

Causal reformulation of the marginal problem in statistics (Vorob’ev,
1962; Kellerer, 1964).

(Statistical) Marginal Problem: Given some distributions over
non-identical but overlapping subsets of variables, determine
existence and uniqueness of a consistent joint distribution
over their union.

Structural causal marginal problem: We want to merge marginal
SCMs s.t. the marginal and joint SCMs are counterfactually consistent.

We formalise counterfactual consistency in the context of categorical
SCMs and assuming causal sufficiency.
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2D Schematic of the Structural Causal Marginal Problem
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Enforcing consistency reduces the space of admissible marginal SCMs.

• Λ0 (outer red area): combinations of counterfactual marginal models
that cannot be counterfactually consistent;

• ΛC (green dotted area): (λX, λY) that are counterfactually consistent;
• Solid blue area: (λX, λY) that are not counterfactually consistent but
cannot be falsified without additional assumptions or constraints; e.g.,
knowing one of the marginal SCMs exactly further restricts the choices
for the other marginal (horizontal green line; blue star can be ruled out). 6



Overview

• We introduce an approach to counterfactual inference based on
merging information from multiple datasets.

• This can be seen as the causal reformulation of a classic
problem in statistics called the marginal problem (Vorob’ev, 1962;

Kellerer, 1964).
• We show that counterfactuals can acquire empirical content
when considered in the broader context of a joint model, even if
only observations of the marginal models are available.

• While focusing mostly on simple examples, the present work still
makes a significant conceptual point: SCMs can sometimes be
falsified as interventional models over additional variables
become available.
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Thank you for your attention &
see you at the poster!
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