Separable Group Equivariant Neural Networks on Lie groups

David M. Knigge

David W. Romero

Erik J. Bekkers

Short overview

Broadly, research into Equivariant CNNs can be divided into:

- Regular G-CNNs
 - Use regular representation to transform kernel
 - Intuitive, easy to implement
 - Applicable to broad range of groups
 - Computational complexity depends on group size and dimensionality
- Steerable G-CNNs
 - Constrain kernels to steerable basis
 - Applicable to unimodular groups, e.g. rotation groups
 - Decouple computational complexity from group size

Summary

- Scalability remains a problem in regular G-CNNs
 - We propose **separating** the **group convolution** operation for affine groups $G = \mathbb{R}^2 \rtimes H$ by **subgroups**:

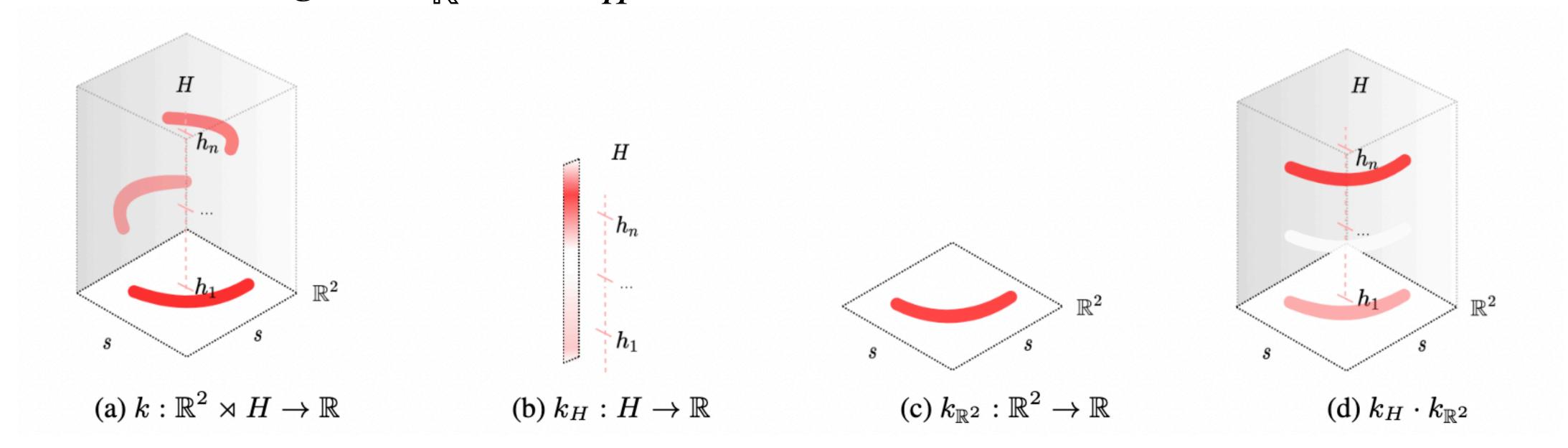
• Factorise into a separate convolution over H and \mathbb{R}^2

Group convolutions

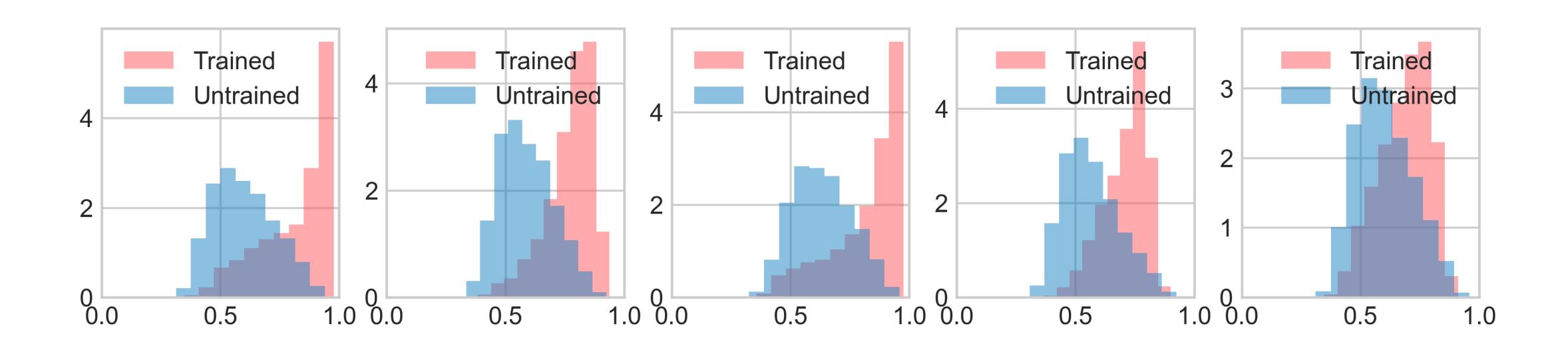
- Feature maps f are defined over G
- The kernel k now also extends over G (considerably increasing computational complexity)

$$(f *_{\operatorname{group}} k)(g) = \int_G f(\tilde{g}) k(g^{-1} \cdot \tilde{g}) \mathrm{d}\tilde{g}$$
 In case of affine groups
$$= \int_{\mathbb{R}^2} \int_H f(\tilde{x}, \tilde{h}) k(h^{-1}(\tilde{x} - x), h^{-1} \cdot \tilde{h}) \frac{1}{|h|} \mathrm{d}\tilde{x} \mathrm{d}\tilde{h}$$

- Idea treat distinct subgroups separately:
 - i.e. separate convolutions over rotation and spatial dimensions
 - Assume: $k(g) = k_{\mathbb{R}^2}(x) \cdot k_H(h)$



• It turns out there is empirical motivation for this approach, learned G-conv kernels exhibit redundancy along the H axis!



- Idea: treat distinct subgroups separately:
 - i.e. separate convolutions over rotation and spatial dimensions
 - Assume: $k(g) = k_{\mathbb{R}^2}(x) \cdot k_H(h)$

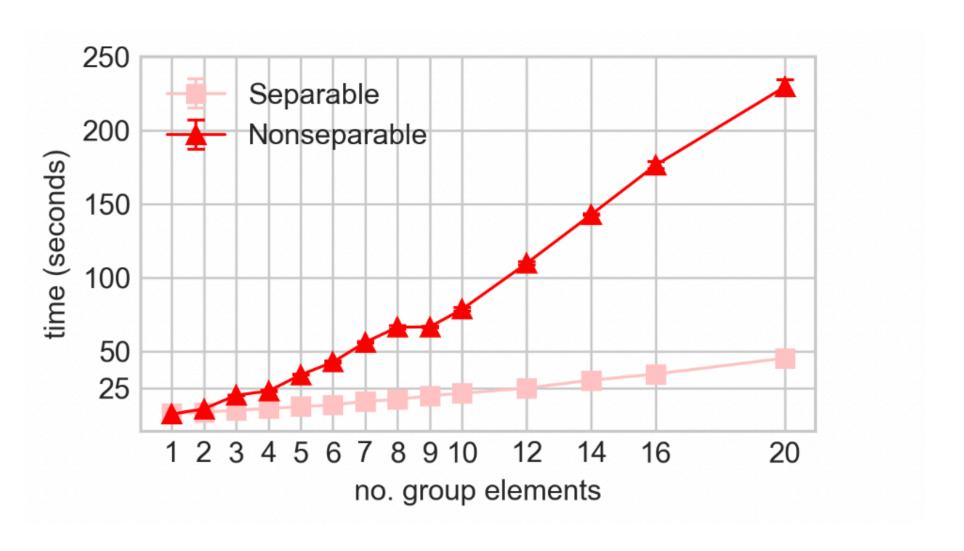
$$(f *_{group} k)(g) \approx \sum_{\tilde{x} \in \mathbb{Z}^2} \sum_{\tilde{h} \in \mathcal{H}_{\epsilon}} f(\tilde{x}, \tilde{h}) k(h^{-1}(\tilde{x} - x), h^{-1} \cdot \tilde{h}) \frac{1}{|h|}$$

$$= \sum_{\tilde{x} \in \mathbb{Z}^2} \left[\sum_{\tilde{h} \in \mathcal{H}_{\epsilon}} f(\tilde{x}, \tilde{h}) k_H(h^{-1} \cdot \tilde{h}) \right] \frac{1}{|h|} k_{\mathbb{R}^2} (h^{-1}(\tilde{x} - x))$$

Computational efficiency

Drastically reduces computational complexity:

Process time per epoch on MNIST-rot



In turn allowing for larger groups

Sim(2)-equivariance

Table 2. Test error (%) on rotated MNIST for separable G-CNNs in comparison to other equivariant baselines: G-CNN (Cohen & Welling, 2016a), H-Net (Worrall et al., 2017), RED-NN (Salas et al., 2019), LieConv (Finzi et al., 2020), SFCNN (Weiler et al., 2018b), E(2)-NN (Weiler & Cesa, 2019). † Separable along dilation and rotations dimensions. + Train-time augmentation by continuous rotations.

Baseline Methods							Separable G-CNNs (Ours)			
G-CNN	H-Net	RED-NN	LieConv	SFCNN	SFCNN ₊	E(2)-NN ₊	SE(2)	$\mathrm{SE}(2)_+$	$\mathrm{Sim}(2)^\dagger$	$\mathrm{Sim}(2)_+^\dagger$
2.28	1.69	1.39	1.24	0.88	0.714	0.68	$0.89 {\pm}.008$	$0.66 \pm .023$	$0.66 \pm .009$	0.59 ±.008

Table 3. Test error (%) on CIFAR10 with All-CNN-C architecture, for our separable group convolutions in comparison to other baselines: All-CNN-C (Springenberg et al., 2014), p4- and p4m-G-CNN (Cohen & Welling, 2016a). † Separable along dilation and rotations dimensions. + Train-time augmentation by random horizontal flips and random cropping. n-Sim(2)-CNNs where n is the SIREN hidden size in units. 6-Sim(2)-CNNs have approximately equal numbers of parameters to the original All-CNN-C.

		Baseline Meth	ods		Separable G-CNNs (Ours)					
1.4m param.	1.37m param.		1.27m param.		1.14m param.		1.33m param.		3.22m param.	
All-CNN-C	p4-G-CNN	$p4$ -G-CNN $_+$	p4m-G-CNN	$p4m$ -G-CNN $_{+}$	$\int -\operatorname{Sim}(2)^{\dagger}$	$5\text{-Sim}(2)_+^\dagger$	$6\text{-}\mathrm{Sim}(2)^\dagger$	$6 ext{-} ext{Sim}(2)_+^\dagger$	$16\text{-}\mathrm{Sim}(2)^\dagger$	$16 ext{-} ext{Sim}(2)_{+}^{\dagger}$
9.08	8.84	7.67	7.59	7.04	8.50	7.41	8.22	6.47	7.27	5.50

UNIVERSITY OF AMSTERDAM

Separable vs. nonseparable

