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Abstract

The performance of a language model has been
shown to be effectively modeled as a power-law
in its parameter count. Here we study the scaling
behaviors of Routing Networks: architectures that
conditionally use only a subset of their parame-
ters while processing an input. For these models,
parameter count and computational requirement
form two independent axes along which an in-
crease leads to better performance. In this work
we derive and justify scaling laws defined on these
two variables which generalize those known for
standard language models and describe the per-
formance of a wide range of routing architectures
trained via three different techniques. Afterwards
we provide two applications of these laws: first de-
riving an Effective Parameter Count along which
all models scale at the same rate, and then using
the scaling coefficients to give a quantitative com-
parison of the three routing techniques considered.
Our analysis derives from an extensive evaluation
of Routing Networks across five orders of magni-
tude of size, including models with hundreds of
experts and hundreds of billions of parameters.

1. Introduction

It is a commonly held belief that increasing the size of
a neural network leads to better performance, especially

in model size leads to an additive reduction in the model’s
loss (Kaplan et al., 2020; Hernandez et al., 2021; Henighan
et al., 2020; Rosenfeld et al., 2019). These relationships are
not well understood, but a key implication is that a sequence
of small' models can be used both to infer the performance
of models many times more powerful, but also to provide
global information about the scalability of an architecture.

Enter Routing Networks: models with the unusual prop-
erty that each input interacts with only a subset of the net-
work’s parameters — chosen independently for each dat-
apoint (Bengio et al., 2016; 2013; Denoyer & Gallinari,
2014). For a Routing Network, the number of parameters
is nearly independent from the computational cost of pro-
cessing a datapoint. This bifurcates the definition of size
and prevents a scaling law in parameters alone from fully
describing the model class. Specific Routing Networks have
been trained successfully at large scales (Fedus et al., 2021;
Du et al., 2021; Artetxe et al., 2021), but the general scaling
behavior is not well understood. In this work we analyze
the behavior of routed language models so that we might
infer the scaling laws that describe their performance.

Key contributions. We analyze three different tech-
niques for training Routing Networks, detailed in §3:
Sinkhorn-BASE, a sparse mixture-of-experts (SMOE) ap-
proach modifying BASE (Lewis et al., 2021); non-parametric
HASH Layers (Roller et al., 2021); and routing via Rein-
forcement Learning (RL-R). With models up to 200 billion
parameters, we observe the following:
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If you don’t have time for the whole talk, our paper says:

Mixture-of-Expert-like routed language models obey simple
scaling laws which predict their performance as a function of
the number of experts E and the base size of the model N.
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Background (Routing and Scaling Laws)
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—

Neural Networks and Scaling

Most neural networks, including Transformers, are easily described as a sequence
of transformations with distinct parameters applied iteratively to an input.
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Routing

Routing is an alternative scaling method: where extra layers are added in parallel
to existing ones, and a new layer called the Router decides which layer to use.

/' )
—>]
2(1)

Transformation ¢

s )

. ) —! Transformation .
@—-[Transformatlon o L %@) [—| Transformation
1) p S 3
~E Transformation ¢ 1

\ One expert
— Router I

One layer-group




Background — Routing Unified Scaling Laws for Routed Language Models

Routing Tradeoff

With routing, parameter count is proportional to E but execution has constant cost.

The number of parameters is proportional to E=3...
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But the router only picks a single expert! So the cost is fixed!
\‘{ (note: technically the router picks K experts where K could be > 1)
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Routing Tradeoff
With routing, parameter count is proportional to E but execution has constant cost.
4 A . .
The number of parameters is proportional to E=3...
1 92(1) Eocc© = (91+92(1)+92(2)+92(3)+93)
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But the router only picks a single expert! So the cost is fixed!
\‘{ (note: technically the router picks K experts where K could be > 1)

But this adds a challenge: you need a good router to pick the right expert, but its
output (which expert to pick) is discrete so it can'’t just be trained end to end!
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Routed Transformers

Routing can be applied to transformers by converting a subset of the feed-forward
layers (FFWSs) into routed equivalents, each with a distinct router.
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(you can also route attention layers, but we don’t analyze this in our paper)

Routed Transformer
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—

Routing History

Multiple groups have trained routed transformers in this way [1, 2, 3], and argue
that they outperform equivalently-costly dense transformers, most based on the
Sparse Mixture of Experts (SMoE) architecture introduced by Shazeer et al [4].

Several of these papers argue that the improvement over dense transformers
increases as you increase E, the number of experts.

[1] Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer, https://arxiv.org/abs/1701.06538
[2] GShard: Scaling Giant Models with Conditional Computation [...], https://arxiv.org/abs/2006.16668

[3] Switch Transformers: Scaling to Trillion Parameter Models [...], https://arxiv.org/abs/2101.03961

[4] Efficient Large Scale Language Modeling with Mixtures of Experts https://arxiv.org/abs/2112.10684
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—

Routing has Potential!

These are exciting results! We know that the cost of executing a routing network is
independent of the number of experts E, so if increasing E improves performance,
this potentially provides a cost-free avenue of scaling!

Test Loss
(&)
i

. 16e
.\

N
o

32
‘\
.. _Bde

- 128e
"~~\\‘256e

o
o

4.84

10° 100
Sparse Model Parameters

The performance of routed networks increases with E!
From [3] (Switch Transformer)
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Routing: what do we want to know?




Background — Scaling Unified Scaling Laws for Routed Language Models

—

Routing: what do we want to know?

Q: How much better will my network be if | increase E?



Background — Scaling Unified Scaling Laws for Routed Language Models

—

Routing: what do we want to know?

Q: How much better will my network be if | increase E?

Q: Given a routed network, what is the equivalently powerful dense model?



Background — Scaling Unified Scaling Laws for Routed Language Models

—

Routing: what do we want to know?

Q: How much better will my network be if | increase E?
Q: Given a routed network, what is the equivalently powerful dense model?

Q: How will the improvement from routing change if | increase the model’s size?
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—

Unknown Performance

We don’t know how to answer these questions! Routing improves the performance
of language models, but exactly how and by how much is still unknown!
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—

Unknown Performance

We don’t know how to answer these questions! Routing improves the performance
of language models, but exactly how and by how much is still unknown!

What we want are the sort of guarantees that have been done for dense
transformers with scaling laws.
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—

Scaling Cost

Kaplan et al [5] showed the loss of dense transformers obey a power law:

log L(N) = (%)M

5.6 —— L=(N/8.8-1013)-0.076

4.8
4.0
3.2
2.4
105 107 109
Parameters

[5] Scaling Laws for Neural Language Models, https://arxiv.org/abs/2001.08361
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—

Scaling Cost

Kaplan et al [5] showed the loss of dense transformers obey a power law:

log L(N) = (%)QN

5.6 —— L=(N/8.8-103)-0076
4.8
This is a near-guarantee that scaling works! oL
Knowing a functional form for the loss provides 3.2

opportunities for all sorts of interesting analysis!

(like estimating the optimal model size for a given compute) =

10° 107 10°

Parameters

[5] Scaling Laws for Neural Language Models, https://arxiv.org/abs/2001.08361
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—

Motivation + Overview

We want to extend the guarantees given by scaling laws to routing, so that we can
predict the improvement routing will provide to any model and analyze their behavior
at a larger scale to draw conclusions about the properties of routing networks.
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The Main Result: A Scaling Law for Routed Language Models

The performance of a routed transformer is given by a simple function of N and E:

log L(N, E) £ alog N+blog E+clog N log E+d

where

&) —

& 1 L1

] y
E_1+(E1 1 ) Emax

start Ema.x

a b, c,d E__and E_ are coefficients to be fit.
start max
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The Main Result: A Scaling Law for Routed Language Models

This scaling law can be decomposed in a clear way:

log L(N,E) = alog N +blog E + clog Nlog E + d
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The Main Result: A Scaling Law for Routed Language Models

This scaling law can be decomposed in a clear way:

log L(N,E) = alog N +blog E + clog Nlog E + d
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The Main Result: A Scaling Law for Routed Language Models

This scaling law can be decomposed in a clear way:
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log L(N,E) = alog N +blog E + clog Nlog E + d
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The Main Result: A Scaling Law for Routed Language Models

This scaling law can be decomposed in a clear way:
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log L(N,E) = alog N +blog E + clog Nlog E + d
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The Main Result: A Scaling Law for Routed Language Models

This scaling law can be decomposed in a clear way:
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log L(N,E) = alog N +blog E + clog Nlog E + d

- =

A saturation function limiting improvement from routing
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—

The Main Experiment Sweep

To provide evidence for this scaling law, we trained a large set of routed
transformers, varying N from 15M to 1.3B and E from 1 to 512.

32 -

Loss
o

Validatio
N
T

| I | | I | |
1 2 4 8 16 32 64128256512 10° 1011
Expert Count Total Parameters

Each dot here is the validation loss of a separately trained routed transformer.
Different rows represent different values of N.
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—

The Main Experiment Sweep

Given that data, we can solve for coefficients: Table 3: Solutions to Eq. (1).

| a b c d Egant Eax
|-0.082 -0.108 0.009 1.104 1.847 314.478
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© ‘.“5 ~‘.~ ,_‘.. o .
= 18ay | [ TSl T8 function of N and E(dotted lines).
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—

The Main Experiment Sweep (11)

Let’s dwell on this plot for a second, it's the key result!
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—

The Main Experiment Sweep (11)

Let’s dwell on this plot for a second, it's the key result!
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—

The Main Experiment Sweep (11)

Let’s dwell on this plot for a second, it's the key result!
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2.0 i ... SN
The dotted lines are predicted fits, i.e., what 1 2 4 81632 128 512
our scaling laws predict the loss will be for a EXpert tount

certain value of N when sweeping over E.
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—

The Main Experiment Sweep (1)

Let’s dwell on this plot for a second, it's the key result!

3.2 15M e _
. . ) 3.0 25M @u \Q~
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524 e S L
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ok
2.0 soce 7 LT
The dotted lines are predicted fits, i.e., what 1 2 4 81632 128 512
our scaling laws predict the loss will be for a EXpert tount

certain value of N when sweeping over E.

They overlap extremely well! We have proposed a scaling law which can accurately model the
behavior of routed transformers!
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—

Different Routing Techniques

We want these scaling laws to generalize as much as possible. A key point of
generalization comes down to exactly how we train the router.

o
] e2(1)
> (S)
2(2
H e2(3)
— The router’s decision on which expert to pick is crucial,
H }4// but how do we train it since it’s non-differentiable?
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—

Different Routing Techniques

We want these scaling laws to generalize as much as possible. A key point of
generalization comes down to exactly how we train the router.

)
] e2(1)
> (S)
2(2
H e2(3)
— The router’s decision on which expert to pick is crucial,
H }4// but how do we train it since it’s non-differentiable?

In fact, we ran that previous experiment sweep three different times!
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S-BASE: Sinkhorn-balanced Switch Transformers

The first time we used S-BASE, a technique similar to BASE [6] or Switch Transformers [7].

We solve this problem using the Sinkhorn algorithm [Knopp and Sinkhorn, 1967], that takes the logit matrix L € RT*Z
and returns a soft-assignment matrix IT € R7*#_ The Sinkhorn algorithm solves Eq. (19) by alternated ascent in the
dual (see Peyré and Cuturi [2019] for details). Starting from fo = 0 € RT and go = 0 € R, we set

E
Viell,  (fon)i=—log g 3 ep(Ly — (a),) (20)
j=1
1 x
Vj e [E] (9t+1)]~ = —log T Zexp(L,-j — (fe+1);)-
i=1

These methods reuse the selection logits as scalar multipliers,
providing a gradient to the policy (albeit not the exact right one).

[6] BASE Layers: Simplifying Training of Large, Sparse Models, https://arxiv.org/abs/2103.16716
[7] Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity, https://arxiv.org/abs/2101.03961
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—

RL-R: Training the Router via A2C

The second time, we used RL-R, a technique we propose that trains the router with RL.

An alternative improvement is to learn an additional baseline function for each router. This method has an additional
entropy regularization loss and computes advantages A; = R; — b; for the learned baseline b;:

NZlogpz i NZlogpz pi+ Nsz (26)

Where we use the Huber Loss to calculate the value loss v;.

2 i | &
e {( —b;) if |[R; — b;| < 4, @7

6(|R; —b;| — 30)  otherwise.

Using reinforcement learning for routing is an old and studied idea,
but hasn’t been revisited in the context of large routed transformers.
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—

Hash Layers: Non-Parametric Expert Assignment

The third time, we used Hash Layers [8], a recently proposed non-parametric alternative.

4 4 4 L l
[ Layer! + 1 j h
f ? f 1 _____ MoE FFN
MoE MoE MoE MoE

Laver7 I FEN FEN FEN |FFN1HFFN2||FFN3|
ayer $ f 5 }

| self-attention

R
VR / f

“We” “eat” “every” “taC (1

From [8]

[8] Hash Layers For Large Sparse Models, https://arxiv.org/abs/2106.04426
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—

Generalization One: Different Routing Techniques (I11)

In all three cases, the resulting models clearly and cleanly fit our proposed
scaling law (with different coefficients).

Our scaling analysis generalized equally well to three different routing techniques!
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—

Answering the First Question!

Recall one of the questions we wanted to ask of our routed networks:

Q: How much better will my network be if | increase E?
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Answering the First Question!

Recall one of the questions we wanted to ask of our routed networks:

Q: How much better will my network be if | increase E?

We can now trivially answer this! Plug in N and E and solve!

1

log L(N,E) £ alog N+blog E—I—clog N log E+d

A
where =

E E—1+(
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Properties of the Scaling Law

The functional form we propose is simple and has a number of important properties.

[I>

log L(N,E) = alog N+blog E—i—clog N log E+d

1

where

| =

51 ( ) B

+
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—

Properties of the Scaling Law ()

Property One: (Log-)Linear Partial Derivatives

Olog L

a(E) 2 —moggN — a+ clog(E)
Olog L

b(N) = _8lo§E = b+ clog(N),

When fixing N or E, varying the other variable leads to a simple power-law, meaning this
scaling law is compatible with the dense transformer’s scaling law.
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Unified Scaling Laws for Routed Language Models

Properties of the Scaling Law (II)

Property Two: Saturation of E

A

&3y =~

i

1
e

1

E—1+(ﬁ“

Emax

)—1 o

Our scaling law includes a saturation function E — E, limiting the improvement so that an
arbitrarily high number of experts gives bounded performance.

Under this saturation function, the maximum performance from routing is
equivalent to the performance achieved with E__ experts without saturation.

Furthermore, for E >> EStalrt and E << Emax, performance varies near-linearly.
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—

Properties of the Scaling Law (III)

Property Three: Generalization via Change-of-Variables

This scaling law can be trivially reparametrized to fit a wider set of architectures, similar to
how dense scaling laws apply equally when scaling in depth or scaling in width.

Test Loss

—_——

N

——

——

1 Layer
2 Layers

3 Layers \

6 Layers
> 6 Layers

103

104 105 106 107 108
Parameters (non-embedding)

10°

From [5] (Scaling Laws)
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Properties of the Scaling Law (III)

Property Three: Generalization via Change-of-Variables

There are several key routing parameters for which changes affect the performance of the
network but do not change N or E, especially:
K: the number of experts each datapoint is sent to
(we default to K = 1 like Switch Transformers)
R: the percentage of layers which are routed
(we default to 50% like GShard and many others)
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Properties of the Scaling Law (III)

Property Three: Generalization via Change-of-Variables

There are several key routing parameters for which changes affect the performance of the
network but do not change N or E, especially:
K: the number of experts each datapoint is sent to
(we default to K = 1 like Switch Transformers)
R: the percentage of layers which are routed
(we default to 50% like GShard and many others)

The scaling laws as proposed do not generalize across these architectures!
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—

Properties of the Scaling Law (III)

Property Three: Generalization via Change-of-Variables

Luckily, we can fix that! We perform a change of variables, expressing our scaling laws
exclusively in terms of the FLOPs required to execute a datapoint (F), and the fraction of
total parameters any one datapoint interacts with (B).

log L(F, B) £ alog F+blog §+clog F'log B+d,
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—

Properties of the Scaling Law (III)

Property Three: Generalization via Change-of-Variables

Luckily, we can fix that! We perform a change of variables, expressing our scaling laws
exclusively in terms of the FLOPs required to execute a datapoint (F), and the fraction of
total parameters any one datapoint interacts with (B).

log L(F, B) £ alog F+blog §+clog F'log B+d,

The resulting scaling laws fit the data just as
well, and generalize to even more architectures!

256
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Half-way Recap!

1) Dense transformers obey simple scaling laws: bigger models are better.
2) Routing is an alternative type of scaling which improves performance at no cost!

3) We proposed a scaling law which predicts the performance of both dense and
routed transformers as a function of N and E, and we trained a large sweep of
routing networks to validate this law!

4) This scaling law fits the data well, and has a number of desired properties.
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Recall the two other questions we wanted to ask of our routing networks:
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—

Answering Questions

Recall the two other questions we wanted to ask of our routing networks:

Q: Given a routed network, what is the equivalently powerful dense model?
Q: How will the improvement from routing change if | increase the model’s size?

We can answer both questions now!
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—

Application One: Effective Parameter Count

Q: Given a routed network, what is the equivalently powerful dense model?
l.e., L(N, E) is a certain value, what is the N’ such that L(N, E) = L(N’, 1)
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Application One: Effective Parameter Count

Q: Given a routed network, what is the equivalently powerful dense model?
l.e., L(N, E) is a certain value, what is the N’ such that L(N, E) = L(N’, 1)

A: We can solve for this!
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Application One: Effective Parameter Count

Q: Given a routed network, what is the equivalently powerful dense model?
l.e., L(N, E) is a certain value, what is the N’ such that L(N, E) = L(N’, 1)

A: We can solve for this!

5.1 Effective Parameter Equivalence

We leverage Eq. (1) to compute the size N of a dense model giving the same performance as a Routing Network.
Specifically, we solve for L(N,1) = L(N, E), yielding
_ i A b/ (Estart)
N2 (N)a(E)/a(Escart) (E/Estart) @ 11)
Here a(E) = a + clog E. Given a model with N and E, we call N that model’s Effective Parameter Count (or EPC).
Eq. (1) predicts that the performance of all models increases as a power law in this variable

log L(N, E) = alog N(N, E) + d. (12)

Given a network with N and E, we derive this equivalent size and call it the model’'s
“Effective Parameter Count”, or EPC.
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Application One: Effective Parameter Count

EPC represents a unified way to discuss model scale and power.

Before, N and E represented two different axes of improvement.

Increasing N improves performance very rapidly
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Application One: Effective Parameter Count

EPC represents a unified way to discuss model scale and power.

Before, N and E represented two different axes of improvement.
Increasing N improves performance very rapidly
Increasing E improves performance more slowly
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Application One: Effective Parameter Count

With EPC, there is just a single axis of scaling.
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Application One: Effective Parameter Count

With EPC, there is just a single axis of scaling.

To know how much better an {N, E}-shaped model will be, just calculate the equivalent EPC!
All models, routed and dense, obey a simple scaling law of power-law performance in terms of EPC!
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Application Two: Limitations to Scaling

The key part is the third term of the scaling law, which models the interaction
between N and E via a single coefficient c:

log L(N, E) £ alog N+blog E+clog N log E+d

This term implies that the slope of improvement from increasing E varies linearly
with N, meaning that as you change N, the slope of improvement to be expected
from increasing E will change by a linear (in log-space) amount.
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Application Two: Limitations to Scaling

This linear interaction isn’t just a quirk of the scaling law: it's very visible in the data.

Starting at a small N, you can see
that increasing E leads to some
slope of improvement.
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Application Two: Limitations to Scaling

This linear interaction isn’t just a quirk of the scaling law: it's very visible in the data.

Starting at a small N, you can see
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Application Two: Limitations to Scaling

It turns out that a positive value of c is crucial for a good fit to the collected data, which
implies that the benefit from routing is slowly reducing (even at a log-log scale!) as you

increase N.
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Application Two: Limitations to Scaling

Q: How will the improvement from routing change if | increase the model’s size?

A: ... the benefit from routing begins to decrease!

We take this analysis even further and ask: what happens in the limit as we
increase the model size that we’re routing?
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Application Two: Limitations to Scaling

Q: How will the improvement from routing change if | increase the model’s size to
infinity?

A: We can solve for this too!

Next we consider Nyax(N) £ maxg N(N, E), i.e. the maximal effective parameter count that a routing network can
reach. Eq. (11) predicts that log V is an affine function of log NV for any fixed E, and Npax(N) = N for N > Neyoft-
Therefore log Ny, ax is piecewise-affine in log IV, as displayed in Fig. 6:

VN < Ncutoff — 10_%a Nmax(N) = N(N7 Emax)a

VN 2> Ncutoffa Nmax(N) = N. (13)

Because the slope of improvement from routing is reducing by a constant factor,
we can solve for the point at which routing is predicted to stop giving any benefit at
all!
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Application Two: Limitations to Scaling

Q: How will the improvement from routing change if | increase the model’s size to
infinity?

A: We can solve for this too!
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We call this value N_ . .. the size at which routing is predicted to stop helping!
For RL-R, this value occurs at 90B. For S- BASE, routing helps up to N = 900B!
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Application Two: Limitations to Scaling

Q: How will the improvement from routing change if | increase the model’s size to
infinity?

A: We can solve for this too!
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This isn’t some fundamental limitation of routing. These limits are tightly connected to the details
of the training setup, and we believe changes (e.g., increasing the number of tokens trained on) might
substantially effect these values. Rather, there are particular diminishing returns in the routing we
observe, and we can calculate exactly where those losses catch up to you.
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Conclusion

Our paper says that:

1. The performance of routing networks can be modelled via simple scaling laws which we
have proposed, and we have provided a wide range of experimental data supporting

these laws.

log L(N,E) £ alog N+blog E—I—clog N log E+d

1
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2. Scaling laws for routing allows us to conduct a bunch of interesting analyses, especially
in developing a unified scaling perspective (Effective Parameter Count!) and modelling

the behavior of routing as the base size of the model is changed (predicting N
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Conclusion

Our paper says that:

1. The performance of routing networks can be modelled via simple scaling laws which we
have proposed, and we have provided a wide range of experimental data supporting

these laws.

log L(N,E) £ alog N+blog E—I—clog N log E+d

1
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2. Scaling laws for routing allows us to conduct a bunch of interesting analyses, especially
in developing a unified scaling perspective (Effective Parameter Count!) and modelling

the behavior of routing as the base size of the model is changed (predicting N

| want to leave you with two parting comments
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: Final Point #1

While it is true that our scaling laws predict the performance from routing will decrease, the
decrease in effectiveness is very slow, and for the model sizes we have explored, routing is still
extremely effective. It is highly likely the transformers you-the-audience are training are in the
regime where routing is extremely helpful, so you should consider using it!

That said....
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: Final Point #1

While it is true that our scaling laws predict the performance from routing will decrease, the
decrease in effectiveness is very slow, and for the model sizes we have explored, routing is still
extremely effective. It is highly likely the transformers you-the-audience are training are in the
regime where routing is extremely helpful, so you should consider using it!

That said....

I've presented routing as a rosy alternative to scaling, where increased experts means increased
performance at no cost. The reality is more complicated. Building a fast and effective software
stack for routing networks is surprisingly difficult, and best practices are highly dependent on
details of the specific hardware and software.

Users be warned!
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Final Point #2

We considered a lot of details to the routing and variants of the techniques I've mentioned. We have some
really detailed appendices talking about them, including:

(Many!) more variants of routing techniques

Architectural changes and ablations to the routing architectures

Extensive zero-shot evaluation on different downstream datasets
Experimentation on larger (N = 7B) routed transformers

Some exploration of the interaction between training tokens and validation loss

If you’re interested in this work, don’t skip our appendices! We have some interesting stuff in there :)
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Thank you all for listening, and infinite thanks to all the co-authors on this work.

Our Paper: https://arxiv.org/abs/2202.01169
Data is open-sourced at: https://github.com/deepmind/scaling_laws_for_routing
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