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Usual statistical learning
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Usual statistical learning

Unquantified uncertainty = incapacity of knowing if you can trust
these predictions
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Split conformal prediction
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Split conformal prediction
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P{Yyt1 € Interval, (Xpy1)} >
For example: o = 0.1 and obtain a 90% coverage interval.
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Conformal prediction: summary

P{Ypt1 € Interval, (Xpt1)} >

Split conformal prediction is simple to compute and works:

e finite sample;
e any regression algorithm (neural nets, random forest...);

e distribution-free as long as the data is exchangeable.
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series are not exchangeable
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'Images from Yannig Goude class material. 4/14



Framework and notations

e Data: Ty observations (xi,y1), ..., (X7, ¥7,) in RY x R
e Aim: predict the response values as well as predictive intervals
for Ty subsequent observations X741, ..., X7+ T,
< Build the smallest interval Interval’, such that
P {Y; € Interval’, (X¢)} > , fort € [To+1, To+ T1].
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Extensions of conformal prediction to forecasting time series

Chernozhukov et al. (2018)
Wisniewski et al. (2020) and Kath and Ziel (2021)
Xu and Xie (2021)

Gibbs and Candes (2021)
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Adaptive Conformal Inference (ACl), Gibbs and Candes (2021)

Chernozhukov et al. (2018)
Wisniewski et al. (2020) and Kath and Ziel (2021)
Xu and Xie (2021)

. [Gibbsand Candes (2021) ]
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Adaptive Conformal Inference (ACl), Gibbs and Candes (2021)

e Chernozhukov et al. (2018)

e Wisniewski et al. (2020) and Kath and Ziel (2021)
e Xu and Xie (2021)

. [Gibbs and Candes (2021) ]

Initially proposed to handle distribution shift.
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Adaptive Conformal Inference (ACl), Gibbs and Candes (2021)

e Chernozhukov et al. (2018)

e Wisniewski et al. (2020) and Kath and Ziel (2021)
e Xu and Xie (2021)

. [Gibbs and Candes (2021) ]

Initially proposed to handle distribution shift.

The proposed update scheme is the following:
ary1 = ar + 7 (o — errory)

with some chosen + > 0.
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ACI asymptotic result

The proposed update scheme is the following:
ary1 = ar + 7 (o — errory)
with some chosen + > 0.

Gibbs and Candeés (2021) provide an asymptotic validity result for

any distribution.
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ACI asymptotic result

The proposed update scheme is the following:
atq1 = ¢ + 7 (o — errory)

with some chosen + > 0.

Gibbs and Candeés (2021) provide an asymptotic validity result for
any distribution.
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ACI asymptotic result

The proposed update scheme is the following:
atq1 = ¢ + 7 (o — errory)

with some chosen + > 0.

Gibbs and Candeés (2021) provide an asymptotic validity result for
any distribution.
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ACI asymptotic result

The proposed update scheme is the following:
atq1 = ¢ + 7 (o — errory)

with some chosen + > 0.

Gibbs and Candeés (2021) provide an asymptotic validity result for
any distribution.

To+T1

1 2
- Z 1 {y: € Intervale(x¢)} — ( )| < T
t=To+1
= favors large 7. But, the higher 7, the more frequent are the

infinite intervals.
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Theoretical analysis of ACI’s length




Approach

e Consider extreme cases (useful in an adversarial context) with
simple theoretical distributions (additional assumptions);
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Approach

e Consider extreme cases (useful in an adversarial context) with

simple theoretical distributions (additional assumptions);

e Assume the calibration is perfect (and more), to rely on
Markov Chain theory.
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Theoretical analysis of ACI’s length: exchangeable case

Theorem (Informal)

If the data is exchangeable and if the calibration is perfect, then
asy — 0:

Average length of intervals from ACI using

Average length of intervals from Split Conformal Prediction
+ 7 x C(«v, distribution of the data),

where C(cv, distribution of the data) > 0 in non-atypical cases.
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Theoretical and numerical analysis of ACI’s length: AR(1) case

Et41 = Qe + &pt1
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Theoretical and numerical analysis of ACI’s length: AR(1) case

Et41 = Qe + &pt1
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Figure 5: +" minimizing the average length for each .

11/14



AgACI




AgACI: adaptive wrapper around ACI

Online aggregation under expert advice (Cesa-Bianchi and Lugosi,
2006) computes an optimal weighted mean of experts.
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AgACI: adaptive wrapper around ACI

Online aggregation under expert advice (Cesa-Bianchi and Lugosi,
2006) computes an optimal weighted mean of experts.

AgACT performs 2 independent aggregations: one for each bound

(the upper and lower ones).
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AgACI: adaptive wrapper around ACI, scheme (upper bound)
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: adaptive wrapper around ACI, scheme (upper bound)
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adaptive wrapper around ACI, scheme (upper bound)

Experts Previous upper Weights
bounds
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adaptive wrapper around ACI, scheme (upper bound)

Experts Previous upper Weights Forecasts Experts
bounds att+1
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adaptive wrapper around ACI, scheme (upper bound)

Experts Previous upper Weights Weighted Forecasts Experts
bounds mean  att+1]
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Numerical experiments

Simulated data and French electricity price forecasting




Experimental take-away messages

e Benchmarks are not robust to the increase in the temporal
dependence;
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Experimental take-away messages

e Benchmarks are not robust to the increase in the temporal
dependence;

e ACI is robust, maintaining validity, with an appropriate ~;
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Experimental take-away messages

Benchmarks are not robust to the increase in the temporal

dependence;

ACl is robust, maintaining validity, with an appropriate ;

AgACl is robust, maintaining validity, not the smallest;

more in the paper!
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Thanks for listening!
To join us at the poster session: #117
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