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Black-box Function under Uncertainty Environment

• Consider a constrained optimization for black-box functions under
uncertainty environment using Gaussian process (GP).

• Two types of variables exist:
• Design variable x: Fully controllable.
• Environmental variable w: Realized randomly.

Goal: Identify desired x by taking into account the uncertainty of w.
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Robustness Measure

How to define the optimal design variable x?

• Chance-constrained (CC) problem is reasonable:

(CC): arg max
x

E
w∼P(true)

w
[f(x,w)]

subject to P
w∼P(true)

w
[g(x,w) > h] > α.

• CC problem is regard as the constrained optimization between the
expectation and probability w.r.t. the uncertainty of w.

• This is used in many situations such as power system control.

If the distribution of w is unknown, CC problem cannot be defined.

• We focus on a distributionally robust CC (DRCC) problem:

(DRCC): arg max
x

inf
Pw∈A

Ew∼Pw [f(x,w)]

subject to inf
Pw∈A

Pw∼Pw [g(x,w) > h] > α.
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Problem Setup (DRCC Problem)
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• Target functions:

F (x) = inf
Pw∈A

Ew∼Pw [f(x,w)],

G(x) = inf
Pw∈A

Pw∼Pw [g(x,w) > h].

• A ≡ {Pw | d(Pw,Pref) < ϵ}:
Family of candidate
distributions.

• h: Given threshold.
• Pref: Given reference

distribution.

• △ is the optimal value of CC
problem.

Goal: Find the optimal value of DRCC △ efficiently.
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Bayesian Optimization for DRCC Problem

• We propose a Bayesian optimization method for DRCC problem by
constructing credible intervals that contain target functions w.h.p.

Credible interval of F (x) : inf
Pw∈A

∫
f(x,w)︸ ︷︷ ︸

(i)

dPw

︸ ︷︷ ︸
(iii)

,

Credible interval of G(x) : inf
Pw∈A

∫ (ii)︷ ︸︸ ︷
1l[g(x,w)︸ ︷︷ ︸

(i)

> h] dPw

︸ ︷︷ ︸
(iii)

.

Basic idea of our proposed method

(i) Assume GP for f and g, and calculate their credible intervals.
(ii) Construct a credible interval of 1l[·] using the upper and lower ends

of the credible interval of g.
(iii) Compute credible intervals of target functions by using them.

4 / 6
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Theoretical results

• Our proposed method satisfies the following w.h.p.

(Accuracy for DRCC): Estimated solution xest,DRCC satisfies

F (xtrue,DRCC)− F (xest,DRCC) < η,

G(xest,DRCC) > α− η, η > 0.

(Convergence): Algorithm terminates with sub-linear rate.

(Accuracy for CC): xest,DRCC is a good solution of the CC problem:

E
w∼P(true)

w
[f(xtrue,CC,w)]− E

w∼P(true)
w

[f(xest,DRCC,w)] < 1.5η,
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Experimental results

• Evaluate the performance of our proposed method synthetic and SIR
simulation data.

• Measure the performance based on the utility gap.
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Synthetic SIR simulation

• Solid lines represent our proposed methods. 6 / 6


