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e Consider a constrained optimization for black-box functions under
uncertainty environment using Gaussian process (GP).

GP model of f

Choose x; based on Black-box function

GP posterior
f(x,w)

- GP model of g Wi ~ p(W) e—) g (x’ W)

Update GP posterior

e Two types of variables exist:
e Design variable x: Fully controllable.
e Environmental variable w: Realized randomly.
Goal: Identify desired x by taking into account the uncertainty of w.
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e Chance-constrained (CC) problem is reasonable:

(CC):  arg Inax EwNPgue) [f (z, w)]

subject to P [9(x,w) > h] > .

wNPS‘t)rue)

e CC problem is regard as the constrained optimization between the
expectation and probability w.r.t. the uncertainty of w.

e This is used in many situations such as power system control.

If the distribution of w is unknown, CC problem cannot be defined.
e We focus on a distributionally robust CC (DRCC) problem:

DRCC): inf Epe ,
(DRCC):  arg max inf By, [f(@, w)]

w

subject to PinefAPwNPw [9(x,w) > h] > a.

w
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Problem Setup (DRCC Problem)

e Target functions:

Target functionl
= F(x) = inf E,~ x,w)|,
g (2) = inf Eus, [f(@,w)]
g8°1( A ‘ G(x) = inf P z,w) > h
£ (@) = inf Puop,lo(,w) > 1]
6 1 2 3 4 5§
X o A= {Py | d(Pw,Pres) < €}:
) Family of candidate
z | distributions.
53 | e h: Given threshold.
S o P Given reference
*9 : distribution.
x e A\ is the optimal value of CC
problem.

Goal: Find the optimal value of DRCC A efficiently.
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Bayesian Optimization for DRCC Problem

e We propose a Bayesian optimization method for DRCC problem by
constructing credible intervals that contain target functions w.h.p.

4/6



Bayesian Optimization for DRCC Problem

e We propose a Bayesian optimization method for DRCC problem by
constructing credible intervals that contain target functions w.h.p.

Credible interval of F(x 1nf /f x,w)dPy,,

(|||)

Credible interval of G(x mf / (z,w) > h]dPy,

(iii)
Basic idea of our proposed method

4/6



Bayesian Optimization for DRCC Problem

e We propose a Bayesian optimization method for DRCC problem by
constructing credible intervals that contain target functions w.h.p.

Credible interval of F(x 1nf /f x,w)dPy,,

(|||)

Credible interval of G(x mf / (z,w) > h]dPy,

(iit)
Basic idea of our proposed method
(i) Assume GP for f and g, and calculate their credible intervals.

4/6



Bayesian Optimization for DRCC Problem

e We propose a Bayesian optimization method for DRCC problem by
constructing credible intervals that contain target functions w.h.p.

Credible interval of F(x 1nf /f x,w)dPy,,

(|||)

Credible interval of G(x mf / (z,w) > h]dPy,

(iit)
Basic idea of our proposed method
(i) Assume GP for f and g, and calculate their credible intervals.
(i) Construct a credible interval of 1[:] using the upper and lower ends
of the credible interval of g.

4/6



Bayesian Optimization for DRCC Problem

e We propose a Bayesian optimization method for DRCC problem by
constructing credible intervals that contain target functions w.h.p.

Credible interval of F(x mf /f x,w)dPy,,
(ifi)
(if)
—N—
Credible interval of G(z): inf /]l[g(a:,w) > h] dPy
PyeA N——
(i)
(iii)

Basic idea of our proposed method
(i) Assume GP for f and g, and calculate their credible intervals.
(i) Construct a credible interval of 1[:] using the upper and lower ends
of the credible interval of g.
(iii) Compute credible intervals of target functions by using them.
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Theoretical results
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(Accuracy for DRCC): Estimated solution xest prcc Satisfies

F(Ztrue,prcc) — F(xest,prCC) < 15
G(%estprcc) > a—n, 1> 0.

(Convergence): Algorithm terminates with sub-linear rate.

(Accuracy for CC): @est,prcc is @ good solution of the CC problem:

E ,pime [f (®true.co, w)] =B, peue [f (2estoreC, w)] < 1.5,

P piree) [9(Test DRCC, w) > h] > — 1.57.
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Experimental results

e Evaluate the performance of our proposed method synthetic and SIR

simulation data.

3 d
—————— = -- R

= ; o, Ugn om

“ ! Wy - - DRBO

2 AREY

=] . \h| - - ccBo

\ L DRPTR

< ' 2ot mva

o ' \, | ¥ Proposed
o N Ry i
S s Lo
> a1 I T LI PP
:‘—; °© A N
=]

N

=3

-

2

o

C T T T T T T T

0 50 100 150 200 250 300
iteration
Synthetic

Utility gap

Measure the performance based on the utility gap.

80 100
|

60

40

Proposed

20

iteration

SIR simulation

o Solid lines represent our proposed methods.
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