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Graph Fourier Transform
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Eigendecomposition: L = UAUT
e 1;: The ith eigenvalue. U;: The it eigenvector.
* Frequency=Eigenvalue, Frequency Component=Eigenvector
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Graph Fourier Transform  Graph Domain Frequency Domain
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o
 Frequency content: X; = Ul-T X
o * Amplitude of frequency component U; in X
Graph Fourier transform X = U7X

* Inverse graph Fourier transform X = UX



Graph Spectral Filter

& X; - g(A)X;

Frequency Domain | | y7 vl o

 GCN: fixed filter g(1) =2 — 1
e (GPRGNN: learnable filter

Graph Domain




Spectral GNN

* Based on spectral graph filters.

* For node tasks on a fixed graph.

K
k=0

* General form: Z = MLP (g(Z)MLP(X)) — Linear GNN: Z = g(L)xw

* Filter operator: polynomial g(Z) = > Lk

* Lower bound for the expressive power of spectral GNNSs
* Linear GNN outperforms spectral GNNs with MLPs



Universality Theorem

» Linear GNNs can produce any one-dimensional prediction if L has no multiple
eigenvalues and the node features X contain all frequency components.

1. Multi-dimensional output
* Solution: Individual filter for each output channel
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Universality Theorem

2. Multiple eigenvalue
* Same eigenvalue—scaled by same fold

3. Missing frequency component
* Node feature X doesn’t contain
some frequency component
* X;=0-vg X;-9g(4) =0




Basis Choice

* Different polynomial bases—same expressive power

* Use a set of orthonormal bases on the signal density in frequency domain
* Accelerate optimization

e Jacobi Basis
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Experiment: Real-World Datasets

DATASETS GCN APPNP CHEBYNET GPRGNN BERNNET [ JACOBICONV
CORA 87141101 88.14d41073 86.6T1082 88507100 88024005 | 889810 a6
CITESEER 79861067 80471074 79114075 80.124p83 80.0940.79 | 80.T840 79
PUBMED Hﬁ.?r-'lj:u_;g? HH.IEiq}.;ﬂ H?.gif}iq}_gﬁ HH.flfii[]_;a}:; Hﬂ.-’lﬁiq}.41 Sg.ﬁziu_;.ll
COMPUTERS 83.32iu_:;:{ 85.32:&1},:-;]' H?.ﬁdiq}_q;i Hfi.ﬁﬁin_zn 8?.[‘5"111}.44 90.39450.29
PHOTO 88.2040.73 88.5140.31 93.774+032 93.8040.028 93.6340.35 | 95.43 10 23
CHAMELEON 59.614291 951.844180 59284105 67.2841100 68.294158 | 74.2041 03
ACTOR 33.2:-‘5:|:]_1f; 3"][']'('!11}1"1 :';?.ﬁliq}_m} :-‘59.921[].{}? 41.7911_[]1 ‘-1:]..]_?:t{]._[;4
SC\-‘U[RREL 4f}THiug? H‘Jl.Tlii]._;,]' ’1[].55i1}_42 5”.15i1_92 51.35i1}_73 57.38i1_25
TEXAS 77381508 9098164 86.224545 92954131 931240465 | 93,4445 13
CORNELL 65.9044.435 91814106 83934013 91374181 92134164 | 92.95:2 46

* JacobiConv: linear GNN using Jacobi basis and individual filter for
each output channel.

* JacobiConv outperforms existing spectral GNNss.
* 10% parameters & similar time overhead



Conclusion

* Linear GNNSs can be universal under mild conditions.
* No multiple eigenvalue

* No missing frequency component
 Basis choice can affect the optimization of spectral GNNSs.

 JacobiConv achieves state-of-the-art empirical performance and verifies our theory.

Thank you!

Paper ID: 2811
Code: https://github.com/GraphPKU/JacobiConv
Contact: wangxiyuan@pku.edu.cn (Xiyuan Wang, Ph.D. student at Peking University)

muhan@pku.edu.cn (Muhan Zhang, Assistant Professor at Peking Univerisity)
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