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Graph Fourier Transform
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Eigendecomposition: �𝐿𝐿 = 𝑈𝑈Λ𝑈𝑈𝑇𝑇
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Normalized Laplacian �𝐿𝐿 = 𝐼𝐼 − 𝐷𝐷−
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• 𝜆𝜆𝑖𝑖: The 𝑖𝑖th eigenvalue. 𝑈𝑈𝑖𝑖: The 𝑖𝑖th eigenvector.
• Frequency=Eigenvalue, Frequency Component=Eigenvector



Graph Fourier Transform
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• Frequency content: �𝑋𝑋𝑖𝑖 = 𝑈𝑈𝑖𝑖𝑇𝑇𝑋𝑋
• Amplitude of frequency component 𝑈𝑈𝑖𝑖 in 𝑋𝑋

• Graph Fourier transform �𝑋𝑋 = 𝑈𝑈𝑇𝑇𝑋𝑋
• Inverse graph Fourier transform 𝑋𝑋 = 𝑈𝑈 �𝑋𝑋
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Graph Spectral Filter
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• GCN: fixed filter 𝑔𝑔 𝜆𝜆 = 2 − 𝜆𝜆
• GPRGNN: learnable filter
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Spectral GNN
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• Based on spectral graph filters. 
• For node tasks on a fixed graph.

• Filter operator: polynomial 𝑔𝑔 �𝐿𝐿 ≔ �𝑘𝑘=0
𝐾𝐾 𝛼𝛼𝑘𝑘 �𝐿𝐿𝑘𝑘

• General form: 𝑍𝑍 = MLP 𝑔𝑔 �𝐿𝐿 MLP 𝑋𝑋 → Linear GNN: 𝑍𝑍 = 𝑔𝑔 �𝐿𝐿 𝑋𝑋𝑋𝑋

• Lower bound for the expressive power of spectral GNNs
• Linear GNN outperforms spectral GNNs with MLPs



• Linear GNNs can produce any one-dimensional prediction if �𝐿𝐿 has no multiple 
eigenvalues and the node features 𝑋𝑋 contain all frequency components.

Universality Theorem
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1.  Multi-dimensional output
• Solution: Individual filter for each output channel



Universality Theorem
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2.  Multiple eigenvalue
• Same eigenvalue→scaled by same fold
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3.  Missing frequency component
• Node feature 𝑋𝑋 doesn’t contain 

some frequency component
• 𝑋̃𝑋𝑖𝑖 = 0 → ∀𝑔𝑔, 𝑋̃𝑋𝑖𝑖 ⋅ 𝑔𝑔 𝜆𝜆𝑖𝑖 = 0



• Different polynomial bases→same expressive power
• Use a set of orthonormal bases on the signal density in frequency domain

• Accelerate optimization

• Jacobi Basis
• 𝑃𝑃0

𝑎𝑎,𝑏𝑏(𝑧𝑧) = 1,𝑃𝑃1
𝑎𝑎,𝑏𝑏(𝑧𝑧) = 𝑎𝑎−𝑏𝑏

2
+ 𝑎𝑎+𝑏𝑏+2

2
𝑧𝑧

• For 𝑘𝑘 ≥ 2, 𝑃𝑃𝑘𝑘
𝑎𝑎,𝑏𝑏(𝑧𝑧) = (𝜃𝜃𝑘𝑘𝑧𝑧 + 𝜃𝜃𝑘𝑘′ )𝑃𝑃𝑘𝑘−1

𝑎𝑎,𝑏𝑏 (𝑧𝑧) − 𝜃𝜃𝑘𝑘″𝑃𝑃𝑘𝑘−2
𝑎𝑎,𝑏𝑏 (𝑧𝑧)

• 𝜃𝜃𝑘𝑘 = 2𝑘𝑘+𝑎𝑎+𝑏𝑏 2𝑘𝑘+𝑎𝑎+𝑏𝑏−1
2𝑘𝑘 𝑘𝑘+𝑎𝑎+𝑏𝑏

• 𝜃𝜃𝑘𝑘′ = 2𝑘𝑘+𝑎𝑎+𝑏𝑏−1 𝑎𝑎2−𝑏𝑏2

2𝑘𝑘 𝑘𝑘+𝑎𝑎+𝑏𝑏 2𝑘𝑘+𝑎𝑎+𝑏𝑏−2

• 𝜃𝜃𝑘𝑘″ = (𝑘𝑘+𝑎𝑎−1)(𝑘𝑘+𝑏𝑏−1)(2𝑘𝑘+𝑎𝑎+𝑏𝑏)
𝑘𝑘(𝑘𝑘+𝑎𝑎+𝑏𝑏)(2𝑘𝑘+𝑎𝑎+𝑏𝑏−2)

Basis Choice
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Experiment: Real-World Datasets

• JacobiConv: linear GNN using Jacobi basis and individual filter for 
each output channel.

• JacobiConv outperforms existing spectral GNNs.
• 10% parameters & similar time overhead
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Conclusion
• Linear GNNs can be universal under mild conditions. 

• No multiple eigenvalue
• No missing frequency component

• Basis choice can affect the optimization of spectral GNNs.
• JacobiConv achieves state-of-the-art empirical performance and verifies our theory.

Thank you!
Paper ID: 2811
Code: https://github.com/GraphPKU/JacobiConv
Contact: wangxiyuan@pku.edu.cn (Xiyuan Wang, Ph.D. student at Peking University)

muhan@pku.edu.cn (Muhan Zhang, Assistant Professor at Peking Univerisity)
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