Generalized Data Distribution Iteration Jiajun Fan, Changnan Xiao

Motivation Higher Sample Efficiency & Superior Performance

Data Richness

Data diversity is crucial for superior performance.

Exploration-Exploitation Trade-off

Too much exploration hurts the sample efficiency.

Data Distribution Optimization Superior Exploration & Superior Exploitation

Superior Exploration

Sampling behavior policies $\pi_{\theta_{1}}$ from a parameterized policy space that indexed by Λ .

Superior Exploitation

Optimizing a selective distribution \mathscr{P}_{Λ} to maximize some target function $L_{\mathscr{C}}$.

Algorithm 1 Generalized Data Distribution Iteration

Initialize $\Lambda, \Theta, \mathcal{P}^{(0)}_{\Lambda}, \theta^{(0)}$. for $t = 0, 1, 2, \dots$ do Sample $\{\mathcal{X}_{\rho_0,\lambda}^{(t)}\}_{\lambda \sim \mathcal{P}_{\lambda}^{(t)}}$. {Data Sampling} $\theta^{(t+1)} = \mathcal{T}(\theta^{(t)}, \{\mathcal{X}_{\rho_0,\lambda}^{(t)}\}_{\lambda \sim \mathcal{P}_{\lambda}^{(t)}}).$ {Generalized Policy Iteration} $\mathcal{P}_{\Lambda}^{(t+1)} = \mathcal{E}(\mathcal{P}_{\Lambda}^{(t)}, \{\mathcal{X}_{\rho_0,\lambda}^{(t)}\}_{\lambda \sim \mathcal{P}_{\Lambda}^{(t)}}).$ {Data Distribution Iteration } end for

Superior Guarantee

If
$$\mathscr{P}_{\Lambda}^{(t+1)}(\lambda) = \mathscr{P}_{\Lambda}^{(t)}(\lambda) \exp(\eta \mathscr{L}_{\mathscr{C}}(\lambda, \theta_{\lambda}))$$

 $\mathscr{L}_{\mathscr{T}}(\mathscr{P}_{\Lambda}^{(t+1)}, \theta^{(t+1)}) = \mathsf{E}_{\lambda \sim \mathscr{P}_{\Lambda}^{(t+1)}}[\mathscr{L}_{\mathscr{T}}(\lambda, \theta_{\lambda})]$

[1] In paper, we require assumptions 1, 2, 3. This is assumption 2. The other two are assumptions of continuity and co-monotonicity.

If we transport more measure on the place with higher value, we have higher expected value.

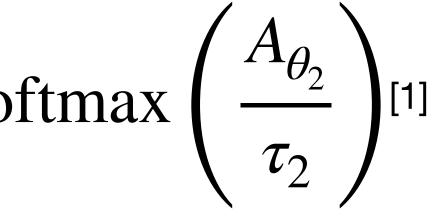
 $(2^{(t)}))/Z^{(t+1)[1]}$, then

 $^{-1)})] \geq \mathsf{E}_{\lambda \sim \mathscr{P}^{(t)}_{\lambda}}[\mathscr{L}_{\mathscr{T}}(\lambda, \theta^{(t+1)}_{\lambda})] = \mathscr{L}_{\mathscr{T}}(\mathscr{P}^{(t)}_{\Lambda}, \theta^{(t+1)}).$

Implementation Soft Entropy Policy Space

$$\theta = (\theta_1, \theta_2), \lambda = (\tau_1, \tau_2, \epsilon),$$
$$\pi_{\theta_{\lambda}} = \epsilon \cdot \text{Softmax}\left(\frac{A_{\theta_1}}{\tau_1}\right) + (1 - \epsilon) \cdot \text{Softmax}\left(\frac{A_{\theta$$

[1] $Q_{\theta_1} = A_{\theta_1} + V_{\theta_1}$, $Q_{\theta_2} = A_{\theta_2} + V_{\theta_2}$. Q_{θ_1} , V_{θ_1} , Q_{θ_2} , V_{θ_2} are optimized by ReTrace and V-Trace with same/different reward shaping. $\pi_{\theta_{\lambda}}$ is optimized by PPO.



Performance

	GDI-H ³	GDI-I ³	Muesli	RAINBOW	LASER	R2D2	NGU	Agent57
Training Scale (Num. Frames)	2E+8	2E+8	2E+8	2E+8	2E+8	1E+10	3.5E+10	1E+11
Playtime (Day)	38.5	38.5	38.5	38.5	38.5	1929	6751.5	19290
HWRB	22	17	5	4	7	15	8	18
Mean HNS(%)	9620.33	7810.1	2538.12	873.54	1740.94	3373.48	3169.07	4762.17
Median HNS(%)	1146.39	832.5	1077.47	230.99	454.91	1342.27	1174.92	1933.49
Mean HWRNS(%)	154.27	117.98	75.52	28.39	45.39	98.78	76.00	125.92
Median HWRNS(%)	50.63	35.78	24.86	4.92	8.08	33.62	21.19	43.62
Mean SABER(%)	71.26	61.66	48.74	28.39	36.78	60.43	50.47	76.26
Median SABER(%)	50.63	35.78	24.86	4.92	8.08	33.62	21.19	43.62

Hindsight **Highlights & Drawbacks**

More General Action Space

In superior guarantee, we do NOT assume any constraint on λ and θ . $\pi_{\theta_{\lambda}}$ can be further extended, for instance, a combination with curiosity, planning, option or other techniques.

More Detailed Characteristics

all $\theta_{\lambda}, \lambda \in \Lambda$ are identical. This is still rough.

We apply I^k and H^k to character algorithms. k is the dimension of Λ . I and H represents whether

Thanks!