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Federated Bilevel Learning
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Federated Bilevel Optimization (FBO)

Our Setting:
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(f;, gj,Cj, Dj) can be different.
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Federated Bilevel Optimization (FBO)

‘ERENERYE

fug 082 fu8s fowrGm !
Client 1 Client2 Client3 Clientm

Our Setting:

@ Stochastic: Access to (f;, gi) is via
stochastic sampling:
fi(x,y"(x)) == Eenc, [fi(x, ¥™ (x): )],
g,-(x,y) = ECND,' [gi(X7 y; C)] s
where (&,¢) ~ (Ci, D).

@ Heterogeneous: For i # j, the
tuples (f;, gi, Ci, Di) and
(f, g, Cj, Dj) can be different.

Applications of FBO: meta-learning, hyperparameter optimization, neural
network architecture search, actor-critic reinforcement learning, GANs,. . .
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Motivating Example

o Federated Hyper-Parameter Optimization: Collaboratively find machine
learning (ML) model and the hyper-parameters while keeping the data
decentralized
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Motivating Example

o Federated Hyper-Parameter Optimization: Collaboratively find machine
learning (ML) model and the hyper-parameters while keeping the data
decentralized

Clients @ Inner objective:
w2708 (%,¥i Dirain)

@ Outer objective:
w2 (y (%) D)

@ yis an ML model such as
neural network.

@ x contains hyper-parameters

................... ; such as

é(xmymf/ o regularization

/ parameters,

Local update on x; and y; ° Iearning rates, and
o batch size.
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Two Special Cases

@ FBO subsumes two popular problem classes with the nested structure.

f_( Federated Minimax Optimization )—

min f(x) = 2 Sy fi (xy* (x): €)

x€RIL
subj. to y*(x) = argmin — # Sy fi(x, ¥ €)
yERd2
FBO with

gi(x,y;¢) = —fi(x,y; ).

Application:

@ Training Generative-adversarial Networks
(GANs)
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Two Special Cases

@ FBO subsumes two popular problem classes with the nested structure.

S .. ;—( Federated Compositional Optimization )—\
f_( Federated Minimax Optimization )—

. _1xm gl
min 1) = & S04 Gy (:6) (I m RS
xER! . * () — s1§m (s AVI2
subj. to y*(x) = argmin — # S fi(x,y:€) bl to y7l) = jfﬂ?;n m ity = bl
yERd2
FBO with FBO with
wit
P e fi(x,y:€) = fi(y;€) and
gi(x,yi Q) = =hlx.yi8)- &(x,¥:¢) = lly = r(x: QII”.
Application: Application:
@ Training Generative-adversarial Networks @ Model Agnostic Meta-Learning (MAML)
(GANs)
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Federated (Single-Level) Optimization

min *ZE&C [i(x: )]

x€R% M
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Federated (Single-Level) Optimization

min 1 ZE§~C,[fi(X; €)]
i=1

x€R% M

Gradient-Type Federated Optimization

For k=0,--- ,K—1:

@ T is number of local iterations

@ Jj-th client: @ of is the stepsize
e Forv=0,...,77—1: @ FedAvg (McMahan et al., 2017):
Xhy oy = Xk Yot b~ Vi £
@ Server: @ FedSVRG(Konecny et al., 2018):

hlk,u = 7Vfi(xilju; é-lk,l/) +

k+1 __ m k
XET =1 mo ity X VA eh) LS Ak eh)
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Challenges in FBO

O\ WA

[0 FedAvg can lead to convergence to a point different from y*(x).

[ Each client i requires access to the global Hessian inverse:

Vi (x,y%(x)) = Vifi(x,y*(x)) — Va,g(x, y*(x))

m

. [Zvig;(x,y*(x)) _lvyfi (x, y"(x))

pi(x.y*(x))




Challenges in FBO
f .‘ f .‘

[0 FedAvg can lead to convergence to a point different from y*(x).

[ Each client i requires access to the global Hessian inverse:

Vi (x, ¥ (x)) = Vxfi(x.y*(x)) = Vi,g(x,y"(x))

m

X ety ) 9,6 (x, (%)

Our approaches: pi(x,y*(x))
@ Use FedSVRG to solve the inner problem.

@ Estimate p(x,y*(x)) via a Federated Inverse Hessian-Gradient-Product

(FedIHGP).
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FedIHGP

e N-Neumann series approximation (Ghadimi & Wang, 2018):

(X y Z Zvygl X y lvyfi(x7y)

=1

~ Z HZ Vg (Y )] Vyfi(x,yi6)

o FedlHGP provides a federated recursive strategy to estimate p.

pn = FedIHGP (x,y, N) @ FedlHGP avoids explicit Hessian:

, .
Select N € {0, . — 1} So,..., Sy € S UAR. Set e matrix-vector products
® i-th client: pj o =V —

i-th client: pj o = Vyfi(x, ¥: &,0) e vector communications

@ server: pg = Z 1 |Snl™ Z/ESO Pi.o

kg — 1
If N/ = 0 Return Py’ - ° ||P(X7y) B E[pNI]H S O((

g
Forn=1,...,N":
P . <1
@ i-th client: p; , = (I - [gilv;‘;gi(xayi C/‘,n))Pn—l

)")-

Lg,

” = (condition number).

5 - ° -
@ server: p, = |S,| 71t Yies, Pin fg =

L J
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Proposed Algorithm: FedNest

For k=0,--- ,K—-1
@ y**1 = Fedlnn (x*, y*, 8%) // one or multiple FedSVRGs on y
@ xk*t1 = FedOut (x*, y**1 o) // FedSVRG + FedIHGP on x
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Proposed Algorithm: FedNest

For k=0,--- ,K—-1

@ y**1 = Fedlnn (x*, y*, 8%) // one or multiple FedSVRGs on y
@ xk*t1 = FedOut (x*, y**1 o) // FedSVRG + FedIHGP on x

Inner Optimizer: Fedlnn

° yi =~ y*(xk)
@ It avoids inr12er client drift:
ly¥, =y | < O(=:(BF)?)

@ The global convergence of
FedInn ensures accurate
hypergradient computation.

\. J
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Proposed Algorithm: FedNest

For k=0,--- ,K—-1
@ yk+! = FedInn (x*, y*, 3¥) // one or multiple FedSVRGs on y
@ xk*t1 = FedOut (x*, y**1 o) // FedSVRG + FedIHGP on x

Inner Optimizer: FedInn Outer Optimizer: FedOut

@ It avoids outer client drift:

® yi ~ y*(xk) ||X/fy _ xk||2 < O(T,-(af-‘)z
@ It avoids inner client drift: . 2
|y, — kaz < O(i(B5)?) +{ly =y ()

@ The global convergence of
FedInn ensures accurate
hypergradient computation.

@ It gives new convergence
guarantees for federated bilevel,
minimiax, compositional, and
single-level optimization.

\. J \. J
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@ f(z),Vfi(z),Vgi(z), V3gi(z) are £ro.lr1,0g,1, Lg 2-Lipschitz continuous,
respectively.

@ gi(x,y) is ug-strongly convex in y for all x € R,

@ Vfi(z;€), Vai(z;¢), Vgi(z;¢) are unbiased estimators of Vf;(z), Vgi(z), V3gi(2);
and their variances are bounded.

@ These assumptions are common in the (non-federated) BO literature.

ICML 2022 11/19



@ f(z),Vfi(z),Vgi(z), V3gi(z) are £ro.lr1,0g,1, Lg 2-Lipschitz continuous,
respectively.
@ gi(x,y) is ug-strongly convex in y for all x € R,

@ Vfi(z;€), Vai(z;¢), Vgi(z;¢) are unbiased estimators of Vf;(z), Vgi(z), V3gi(2);
and their variances are bounded.

@ These assumptions are common in the (non-federated) BO literature.

Theorem (Informal)

Under the above assumptions, if we choose the stepsize properly, then the
iterates of FedNest satisfy

L w[[vred]] = o() wnd = [y —ref] = o( L),
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Theory: Comparison with Previous Results

@ Sample complexity of FedNest and comparable non-FL methods to find
an e-stationary point of f, i.e., 1/K Zszl E[|Vf(x9)|?] < e

o kg = lg1/1g (condition number).

Non-Federated

FedNest | ALSET | BSA | TTSA
batch size o(1)
samples in £ | O(rk2e ?) | O(k3e?) | O(k8e2) | O(kBe=2P)
samples in ¢ O(ng’2) O(f@ge_z) O(rge3) | O(rge*?)
ALSET(Chen et al., 2021), BSA(Ghadimi & Wang, 2018), TTSA(Hong et al.,
2020).

@ Main takeaways:

o FedNest enjoys the same convergence as non-federated alternating SGD
( ALSET), despite objective heterogeneity.
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LFedNest: Communication Efficiency via Local Hypergradient

Light-FedNest (LFedNest):
@ computes hypergradients locally

@ only needs a single communication round for the outer update

definition properties
outer inner global global global # communication
optimizer optimizer outer gradient IHGP  inner gradient rounds
FedNest SVRG on x SVRGon y yes yes yes 2T +N+3
LFedNest SGDonx SGDony no no no T+1
FedNestsgp SVRG on x SGD on y yes yes no T+N+3

@ T: # inner iterations (y update)

@ N: # terms of Neumann series
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Minimax Experiment

@ Minimax saddle point problem (on non-i.i.d. synthetic dataset):

f — f;
i, 1060 = 7 max S (e,
where ) \
flxy)i= = [5In12 = bly v A 4 Sl
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Minimax Experiment

@ Minimax saddle point problem (on non-i.i.d. synthetic dataset):

min f(x) := — max E fi(x,y),
xER% m yeRd%2 <
Py

where
P 1 2 T T A 2
filx,y) =~ [2llyll —biy+y Aix|+ x|
10? 102
1072 e A 1072
= 1076 (\‘: 10*5
*>‘ —— FedAvg-S, s=1 *X
| 107104 — = FedAvg-S, s=10 10710
| — LFedNest, s=1 _
10 2= LRedNest, s=10 x10 *
T10-18] — FedNest, s=1 1018
—— FedNest, s=10
10722 10722
0 25 50 75 100 125 150 175 200

Epoch

0 25 50 75 100125150175 200

Epoch

o LFedNest performs slightly better than FedAvg-S (Hou et al., 2021).
o FedNest converges linearly despite heterogeneity.
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Hyperparam Tuning for Label Imbalance

o Imbalanced classification is the problem of classification when there is
an unequal distribution of classes in the training dataset.

@ Goal: Design fairness-seeking loss functions via bilevel optimization

=:f;(x,y*(x))<Balanced Val Loss

1
minimize — log(1 + eYs(u)—yi(u)
g 3 % Lo+ et

' 1 (u,t)eDi s7t

val

sty (x) = arg min Z Z log(1 + Z el eASYS(”)fA‘-Vf(”)) .

1 (u,t)eDi st

train

=:gj(x,y)<=Parametric Train Loss

@ Outer optimization aims to maximize the class-balanced validation accuracy.

@ Inner optimization trains model parameter y to minimize g = > 7 ; g;.
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Hyperparameter Tuning for Label Imbalance

@ Brown dashed line: Non-Federated bilevel training

@ Black dashed line: Non-Federated accuracy without bilevel tuning

o
S

©
«

|

N N ®
S oo U

—— FedNest
~—— LFedNest

o
o

o
S

Balanced Test Accuracy

0 200 400 600 800 1000
FedNest epochs

@ |.I.D. setup: FedNest behaves
similarly to LFedNest.
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Hyperparameter Tuning for Label Imbalance

@ Brown dashed line: Non-Federated bilevel training

@ Black dashed line: Non-Federated accuracy without bilevel tuning
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@ |.I.D. setup: FedNest behaves
similarly to LFedNest.

Communication rounds

@ FedNest (with SVRG) is significatlly
better than FedNestsgp (with SGD
in Fedlnn).
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Federated (Single-Level) Optimization
FedAvg (McMahan et al., 2017) FedSVRG (Koneény et al., 2018)
FedProx (Li et al., 2020) SCAFFOLD (Karimireddy et al., 2020)
FedNova (Wang et al., 2020) FedLin (Mitra et al., 2021)

Stochastic Bilevel Optimization

BSA (Ghadimi & Wang, 2018) TTSA (Hong et al., 2020)
ALSET (Chen et al., 2021) stocBiO (Ji et al., 2020)

Stochastic MiniMax Optimization
SGDA (Lin et al., 2020) SMD (Rafique et al., 2021)

Stochastic Compositional Optimization
SCGD (Wang et al., 2017) NASA (Ghadimi et al., 2020)
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Conclusion and Future Work

e Conclusion:
o FedNest gives a new framework for federated bilevel, minimax, and
compositional optimization.
o FedNest matches the sample complexity of the alternating SGD.

FedNest
Bilevel [ Minimiax | Compositional [ Single-Level
batch size (1)
samples complexity 0O(e7?)

o Future Work:

o Other applications and properties of FedNest such as federated
actor-critic reinforcement learning.
e Sparsification or quantization for communication-efficient FBO

Paper: ICML 2022, arXiv
Code: github.com/ucr-optml|/FedNest
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