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Motivation

Which medicine
to try next?

Which movies to
show next?

Similar problems: Hyperparameter tuning, online advertisement, A/B testing,
personalization medicines, and many more.

Image source: Internet



Sequential Decision-Making

> In each iteration, agent (or decision-maker) selects the next query.

eedback = f(Query)

> Environment generates a feedback, which is a function ( f) of the features
of selected query.

> Here, fis an unknown, non-linear, complex, and blackbox function.

How to select the next query?
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Bayesian Optimization (BO)

15 H

To choose next function query, BO 10

> uses a Gaussian process (GP) as a surrogate : -
to model the unknown function and

> selects queries by maximizing an acquisition
function (defined using GP surrogate) that
balances exploration and exploitation.
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Stochastic Delayed Feedback

> Feedback is randomly delayed in many real-life problems, e.g., hyperparameter
tuning, clinical trials, and many more.

> To benefit from the experimental parallelization, the agent must start new function
evaluations without waiting for delayed feedback.

How to start a new function query when the observations of
the past function queries are randomly delayed?



Censored Feedback

> Delayed feedback is replaced by censored feedback, i.e., replacing the unavailable
delayed feedback by the minimum function value.

> The minimum function value is known in many real-life applications, e.g., the
minimum accuracy for hyperparameter tuning of ML models is 0 and a user's
minimum response for online recommendation is ‘no click’ (i.e., 0).

> Censored feedback (X) can prevent a selected query from being unnecessarily
queried again by reducing the GP posterior mean around the selected query, hence
better exploration that leads to better theoretical and empirical performances.
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BO with Censored Feedback

> Replace unavailable delayed feedback by censored feedback in BO.

Update GP posterior . —
P post Use GP posterior Calculate acquisition
mean and covariance :

function

function
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Select next query
Add (query, censored feedback))
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> With the posterior belief built using censored feedback, we propose acquisition
functions using upper confidence bound (UCB) and Thompson sampling (TS).



Results
> We have shown that our censored feedback-based BO algorithms have
sub-linear regret upper bounds.

e Regret of UCB variant (GP-UCB-SDF) for T queries:

O (p;,,l (”YT\/T + mw))

Probability of observing delayed € I ! EROT ips(_);mati'on gain from
feedback within the next m iterations any set o unction queries

e Regret of TS variant (GP-TS-SDF) for T queries:

O (p;f (\@(\/V_Wr 1) + m(yr + \/T)))

I» Ignore the logarithmic factors and constants
> Batch BO is a special case of our setting and our algorithms have a better regret
bounds than existing Batch BO algorithms that are based on hallucination.

> We extend our algorithms to contextual Gaussian process bandits problem with
stochastic delayed feedback



Experiments

Visit our poster in Poster Session 1.
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