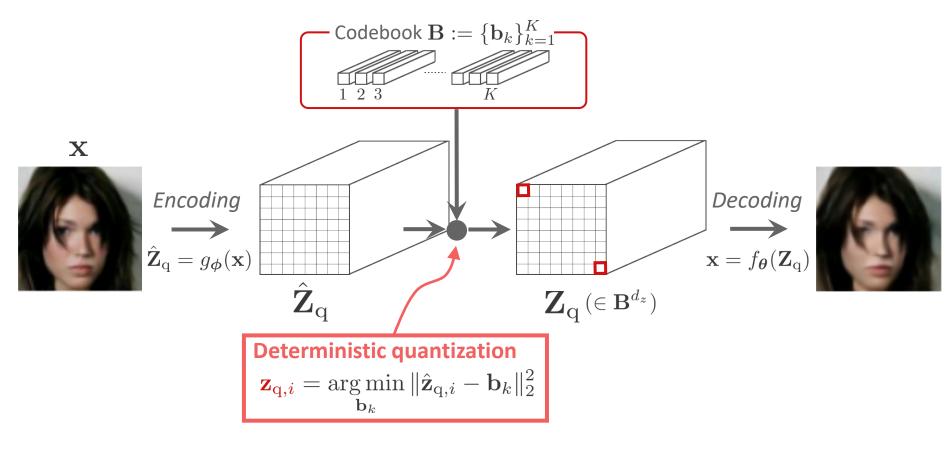
SQ-VAE:

Variational Bayes on Discrete Representation with Self-annealed Stochastic Quantization

Yuhta Takida¹, Takashi Shibuya¹, WeiHsiang Liao¹, Chieh-Hsin Lai¹, Junki Ohmura¹, Toshimitsu Uesaka¹, Naoki Murata¹, Shusuke Takahashi¹, Toshiyuki Kumakura², Yuki Mitsufuji¹

¹Sony Group Corporation, ²Sony Corporation of America

VQ-VAE



$$\mathcal{L}_{\text{VQ}} = \underbrace{-\log p_{\boldsymbol{\theta}}(\mathbf{x}|\mathbf{Z}_{\text{q}})}_{\text{reconstruction}} + \underbrace{1.0 \times \|\text{sg}[g_{\boldsymbol{\phi}}(\mathbf{x})] - \mathbf{Z}_{\text{q}}\|_F^2 + \beta \times \|g_{\boldsymbol{\phi}}(\mathbf{x}) - \text{sg}[\mathbf{Z}_{\text{q}}]\|_F^2}_{\text{codebook + commitment losses}}$$

VQ-VAE

– Codebook
$$\mathbf{B} := \{\mathbf{b}_k\}_{k=1}^K$$
 –

Heuristics:

- Stop gradient operator
- EMA update only for commitment loss
- Codebook reset (optional)

Hyperparameters:

- Coefficients for balancing loss functions
- Weighting for EMA update
- Parameters for codebook reset (optional)

Problems:

- Often suffer from "codebook collapse" (only few codebook elements are used)
- Need to tune "codebook size" as well (dimension and number of codebook elements)

$$-\operatorname{sg}[\mathbf{Z}_{\mathrm{q}}]\|_F^2$$

rec

X

Summary

Questions

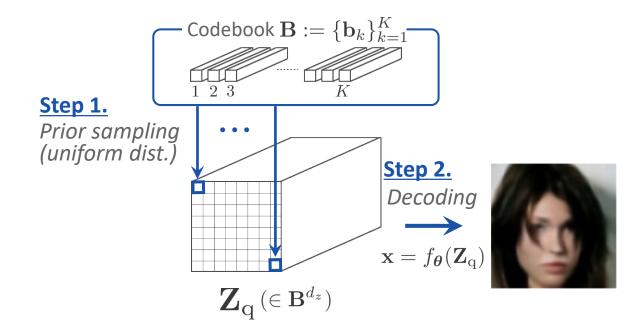
- ✓ Can we eliminate common heuristics from VQ-VAE training?
- ✓ Can we reduce # of hyperparameters?
- ✓ Can we enhance codebook usage (circumvent "codebook collapse")?

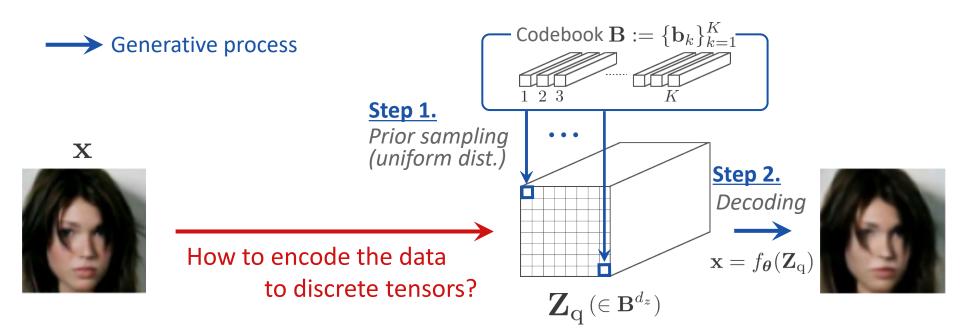
Our work

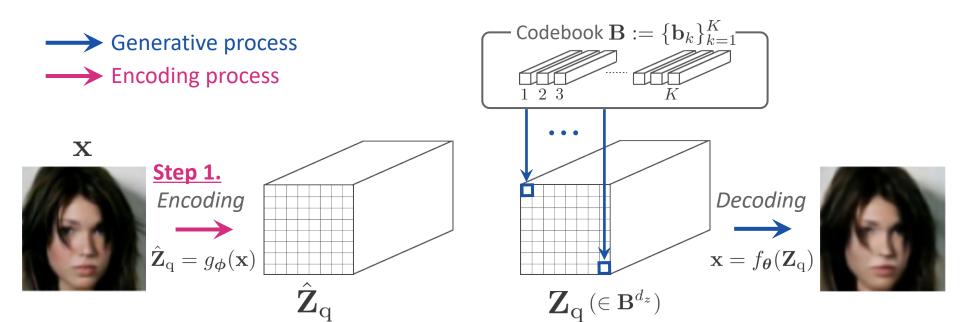
- Formulated VAE equipped with learnable codebook as
 Stochastically Quantized-Variational AutoEncoder (SQ-VAE)
- Derived two variants of SQ-VAE:
 - Gaussian SQ-VAE for continuous distribution
 - von Mises-Fisher (vMF) SQ-VAE for categorical distribution

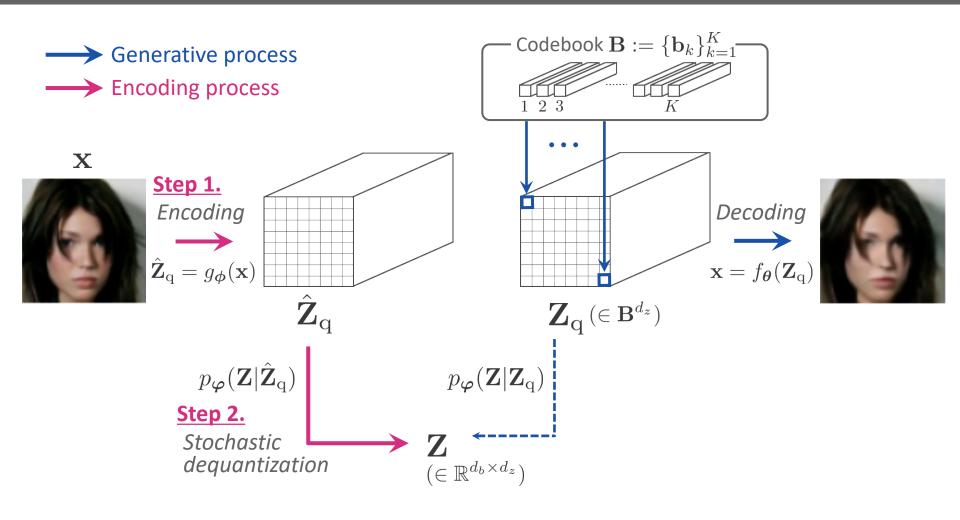
SQ-VAE addresses the above questions naturally

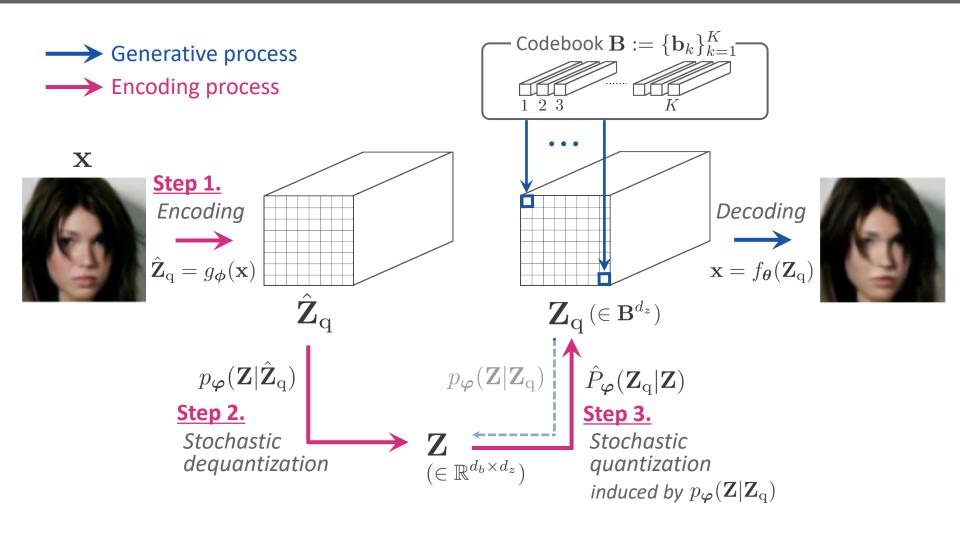
Generative process

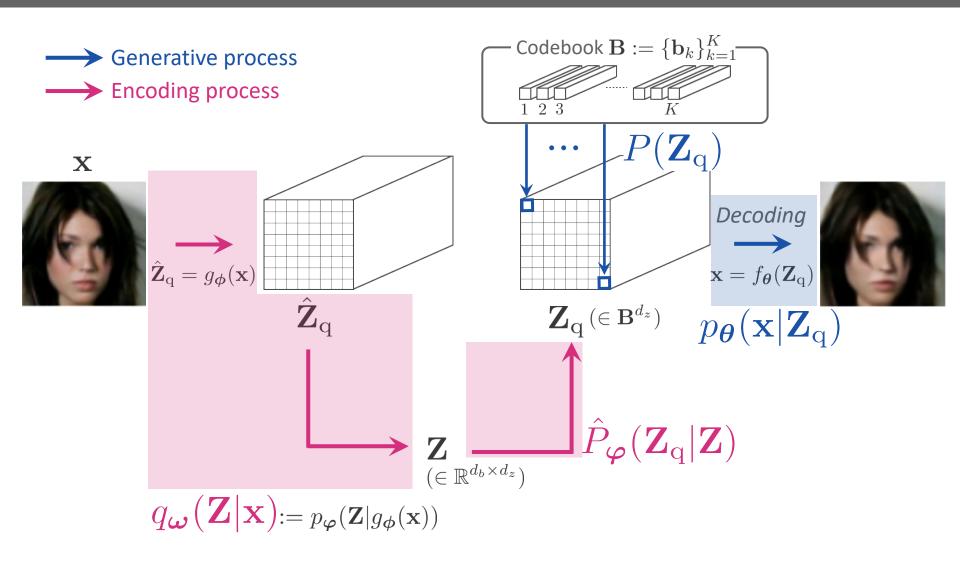












ELBO for generic SQ-VAE

Decoder/encoder distributions

- Overall decoding: $p_{\theta}(\mathbf{x}|\mathbf{Z}_{q})P(\mathbf{Z}_{q})$ prior sampling -> decode
- Overall encoding: $q_{\omega}(\mathbf{Z}|\mathbf{x})\hat{P}_{\omega}(\mathbf{Z}_{q}|\mathbf{Z})$ encode -> dequantize -> quantize

Objective function

$$\log p_{\boldsymbol{\theta}}(\mathbf{x}) \ge -\mathcal{L}_{\mathrm{SQ}}(\mathbf{x}; \boldsymbol{\theta}, \boldsymbol{\omega}, \mathbf{B}) + \mathrm{const.},$$

$$\mathcal{L}_{\mathrm{SQ}}(\mathbf{x};\boldsymbol{\theta},\boldsymbol{\omega},\mathbf{B}) := \mathbb{E}_{q_{\boldsymbol{\omega}}(\mathbf{Z}|\mathbf{x})\hat{P}_{\boldsymbol{\varphi}}(\mathbf{Z}_{\mathrm{q}}|\mathbf{Z})} \left[\frac{p_{\boldsymbol{\theta}}(\mathbf{x}|\mathbf{Z}_{\mathrm{q}})p_{\boldsymbol{\varphi}}(\mathbf{Z}|\mathbf{Z}_{\mathrm{q}})P(\mathbf{Z}_{\mathrm{q}})}{q_{\boldsymbol{\omega}}(\mathbf{Z}|\mathbf{x})\hat{P}_{\boldsymbol{\varphi}}(\mathbf{Z}_{\mathrm{q}}|\mathbf{Z})} \right]$$

$$=^{+} \mathbb{E}_{q_{\boldsymbol{\omega}}(\mathbf{Z}|\mathbf{x})\hat{P}_{\boldsymbol{\varphi}}(\mathbf{Z}_{q}|\mathbf{Z})} \left[\log p_{\boldsymbol{\theta}}(\mathbf{x}|\mathbf{Z}_{q}) + \log \frac{p_{\boldsymbol{\varphi}}(\mathbf{Z}|\mathbf{Z}_{q})}{q_{\boldsymbol{\omega}}(\mathbf{Z}|\mathbf{x})} \right] + \mathbb{E}_{q_{\boldsymbol{\omega}}(\mathbf{Z}|\mathbf{x})} H(\hat{P}_{\boldsymbol{\varphi}}(\mathbf{Z}_{q}|\mathbf{Z}))$$

Reconstruction Discrepancy Entropy regularization b/w \mathbf{Z}_{q} and $\hat{\mathbf{Z}}_{\mathrm{q}}$ of codeboo of codebook

Formulation of Gaussian SQ-VAE

Probabilistic processes (modeled by Gaussian w/ isotropic covariances)

- Gaussian decoder: $p_{\theta}(\mathbf{x}|\mathbf{Z}_{q}) = \mathcal{N}(f_{\theta}(\mathbf{Z}_{q}), \sigma^{2}\mathbf{I})$
- Gaussian dequantization: $p_{\varphi}(\mathbf{z}_i|\mathbf{Z}_q) = \mathcal{N}(\mathbf{z}_{q,i}, \sigma_{\varphi}^2 \mathbf{I})$

Quantization:
$$\hat{P}_{\varphi}(\mathbf{z}_{q,i} = \mathbf{b}_k | \mathbf{Z}) = \operatorname{softmax}_k \left(\left\{ -\frac{\|\mathbf{z}_j - \mathbf{b}_k\|_2^2}{2\sigma_{\varphi}^2} \right\}_{j=1}^k \right)$$

Objective function

Balanced with trainable parameters
$$\mathcal{L}_{\mathcal{N}\text{-}\mathrm{SQ}}(\mathbf{x}; \boldsymbol{\theta}, \boldsymbol{\omega}, \mathbf{B}) := \mathbb{E}_{q_{\boldsymbol{\omega}}(\mathbf{Z}|\mathbf{x})} \hat{\underline{P}_{\boldsymbol{\varphi}}(\mathbf{Z}_{\mathrm{q}}|\mathbf{Z})} \left[\frac{1}{2\sigma^2} \|\mathbf{x} - f_{\boldsymbol{\theta}}(\mathbf{Z}_{\mathrm{q}})\|_2^2 + \frac{1}{2\sigma_{\boldsymbol{\varphi}}^2} \|\mathbf{Z} - \mathbf{Z}_{\mathrm{q}}\|_F^2 \right]$$
 Approximated by Gumbel-softmax trick
$$-\mathbb{E}_{q_{\boldsymbol{\omega}}(\mathbf{Z}|\mathbf{x})} \left[H\left(\hat{P}_{\boldsymbol{\varphi}}(\mathbf{Z}_{\mathrm{q}}|\mathbf{Z})\right) \right] + \frac{D}{2} \log \sigma^2 + \mathrm{const.}$$

- ✓ Any common heuristics (e.g., stop-gradient, EMA) are no longer needed
- √ # of hyperparameters is reduced to only one (for Gumbel soft-max trick)

The effect of "Self-annealing"

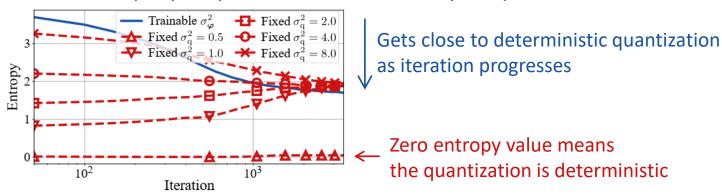
From stochastic to deterministic quantization



 σ_{φ}^2 decreases along with σ^2 (see also Proposition 1)

$$\begin{split} \hat{P}_{\boldsymbol{\varphi}}(\mathbf{z}_{\mathrm{q},i} = \mathbf{b}_k | \mathbf{Z}) &\propto -\frac{\|\mathbf{z}_j - \mathbf{b}_k\|_2^2}{2\sigma_{\boldsymbol{\varphi}}^2} \\ \begin{cases} \sigma_{\boldsymbol{\varphi}}^2 \to \infty \text{ makes } \hat{P}_{\boldsymbol{\varphi}}(\mathbf{z}_{\mathrm{q},i} = \mathbf{b}_k | \mathbf{Z}) \text{ uniform dist.} \\ \sigma_{\boldsymbol{\varphi}}^2 \to 0 \text{ induces deterministic quantization} \end{cases} \end{split}$$

The variational property reduces stochasticity of quantization



✓ The self-annealing effect is expected to enhance codebook usage

Gaussian SQ-VAE on vision dataset

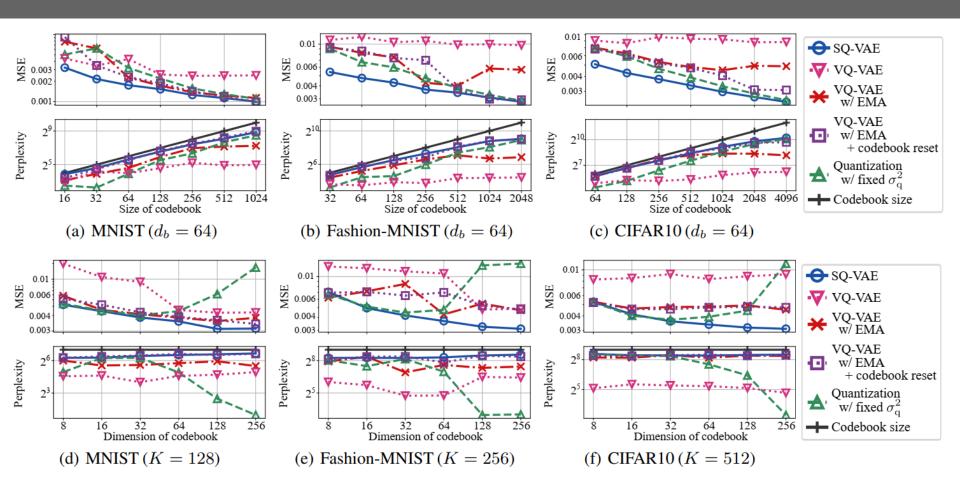


Figure 5. Empirical studies on the impact of codebook capacity examined on MNIST Fashion-MNIST and CIFAR10. (a)–(c) The size K is swept with the dimension d_b fixed to 64. (d)–(f) Various d_b values are tested with the size K fixed as 128, 256, and 512, respectively. The black lines with "+" marks indicate the upper bounds of the perplexities, i.e., K. All the y-axes are in log-scale.

Gaussian SQ-VAE on CelebA

Table 2. Evaluation on CelebA. The MSE ($\times 10^3$) and reconstructed FID (rFID) are evaluated using the test set. The codebook capacity for the discrete latent space are set to $(n_b, k) = (64, 512)$. The Roman numerals for Gaussian SQ-VAEs correspond to those in Table 1. We also show the FID of samples generated with a prior learned with PixelCNN.

Model	Reconstruction		Generation	Latent manipulation (FID)			
Wiodei	MSE	rFID	(FID)	Neighbor-3	Neighbor-5	Neighbor-10	Interpolation
VAE	4.79 ± 0.01	40.3 ± 0.3	_	_	_	_	_
VQ-VAE w/ EMA	1.33 ± 0.41	18.5 ± 5.1	42.0 ± 11.5	31.9 ± 14.8	42.8 ± 20.7	70.7 ± 35.4	28.2 ± 6.4
VQ-VAE w/ EMA+codebook reset	1.62 ± 0.36	22.0 ± 5.9	51.8 ± 10.8	39.7 ± 12.0	52.7 ± 14.7	83.2 ± 20.4	32.6 ± 7.1
Quantization w/ fixed $\sigma_{ m q}^2$	1.09 ± 0.01	15.9 ± 0.1	38.2 ± 0.9	20.0 ± 0.4	26.4 ± 0.8	41.5 ± 2.1	18.6 ± 0.3
Gaussian SQ-VAE (I)	0.96 ± 0.01	14.8 ± 0.3	28.2 ± 0.9	17.8 ± 0.1	21.9 ± 0.1	33.1 ± 0.3	17.6 ± 0.6
Gaussian SQ-VAE (II)	0.98 ± 0.01	14.3 ± 0.2	27.7 \pm 1.1	17.8 ± 0.2	22.2 ± 0.4	34.0 ± 0.9	17.6 ± 0.1
Gaussian SQ-VAE (III)	0.96 ± 0.00	13.9 ± 0.1	28.1 ± 0.3	17.3 ± 0.2	21.6 \pm 0.3	33.5 ± 0.6	18.5 ± 0.4

Reconstruction

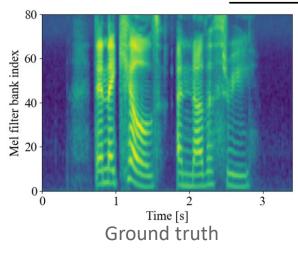
Random sampling (w/ learned PixelCNN)

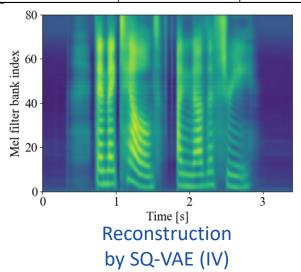
SONY

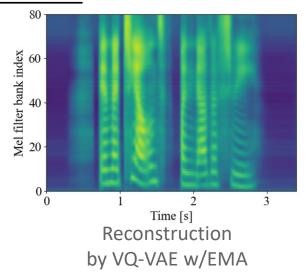
Gaussian SQ-VAE on speech dataset

Table 3. Evaluation on VCTK and ZeroSpeech 2019. The MSE (dB²) of sample reconstruction is evaluated using the test set. We do not apply SQ-VAE (II) in this evaluation because of the variable length property of speech data and the different manipulations of speech signals between training and inference (See Appendix E.2).

Model	$MSE (dB^2)$				
Wiodei	VCTK	ZeroSpeech 2019			
VQ-VAE w/ EMA	29.59 ± 0.25	34.33 ± 1.57			
Gaussian SQ-VAE (I)	25.52 ± 0.08	33.17 ± 1.11			
Gaussian SQ-VAE (III)	25.94 ± 0.22	34.35 ± 1.07			
Gaussian SQ-VAE (IV)	24.68 ± 0.21	32.32 ± 0.88			







Recap

Formulation of SQ-VAE naturally

- Eliminates common heuristics such as EMA, stop-gradient and codebook reset
- Reduces # of hyperparameters to one
 (a temperature parameter for Gumbel softmax trick)
- Enhances codebook usage thanks to "self-annealing" effect in our quantization scheme

Code link: https://github.com/sony/sqvae

