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● Problem: Transfer of knowledge from a labeled source domain to an unlabeled target domain under domain-shift

Domain-shift

Unlabeled Target Dataset

?? ?? ??

Labeled Source Dataset
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Unsupervised Domain Adaptation (DA)[1]

[1] Long et al., “Learning Transferable Features with Deep Adaptation Networks”, ICML ‘15
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Preliminaries: Discriminability and Transferability

● Task-Discriminability → Ease of separating different task-category features with a supervised classifier

● Domain-Transferability → Invariance of feature representations across domains

domain-transferability
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Preliminaries: Discriminability and Transferability tradeoff

● Removing domain-specific info for better transferability may also lead to loss of entangled task-specific info

● Thus, exclusively improving transferability hurts discriminability and vice versa[3]

[3] Chen et al., “Harmonizing Transferability and Discriminability for Adapting Object Detectors”, CVPR ‘20

● Example: In semantic segmentation DA, contour features improve transferability but reduce discriminability
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Can we balance Discriminability and Transferability?

● Prior works[4, 5] propose modified adversarial DA to balance discriminability and transferability

● However, they require concurrent access to both source and target datasets

[5] Yang et al., “Mind the Discriminability: Asymmetric Adversarial Domain Adaptation”, ECCV ‘20

[4] Chen et al., “Transferability vs. Discriminability: Batch Spectral Penalization for Adversarial DA”, ICML ‘19
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Can we balance Discriminability and Transferability?

● Prior works[4, 5] propose modified adversarial DA to balance discriminability and transferability

● However, they require concurrent access to both source and target datasets

● These solutions are unsuitable for privacy-oriented source-free DA[6, 7] where data-sharing is restricted

[7] Kundu et al., “Towards Inheritable Models for Open-Set Domain Adaptation”, CVPR ‘20

[6] Li et al., “Unsupervised Domain Adaptation without Source Data”, CVPR ‘20
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Analyzing existing Domain Generalization (DG) and Source-Free DA works

● SFDA works focus on preserving task-discriminability in the absence of labeled source data

● DG works focus on maximizing domain-transferability in the absence of target data

domain-transferability
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Why is striking a balance crucial in Source-Free DA (SFDA)?

● In the source-free setting, task-discriminability can only be gathered on the source-side

● The tradeoff becomes more severe as discriminability cannot be preserved with only unlabeled target data

● An explicit effort to improve the tradeoff (green region) could considerably benefit Source-Free DA

domain-transferability
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● Translate source and target to a generic-domain with both high transferability and discriminability

● In practice, source-to-generic and target-to-generic translations would result in a loss of discriminability

● We propose mixup between original domain samples and corresponding generic-domain translated samples

What are the key design aspects to improve the tradeoff in SFDA?
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Approx. generic 
domain 

(tractable)



○ Intuitively, edge representation preserves the shape information

○ And removes domain-variant information like color and texture
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How to obtain the generic-domain samples?

● A realizable generic-domain must possess features with high domain-transferability

● Edge representation as a generic-domain

A. Edge-Mixup

Contour
Estimation



○ Augm. feature mean diffuses the domain-variance and is used as the generic-domain features

○ We use a set of task-preserving image augmentations to simulate novel sub-domains
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How to obtain the generic-domain samples?

● A realizable generic-domain must possess features with high domain-transferability

● Feature-space generic-domain representation

A. Edge-Mixup B. Feature-Mixup

Augmentations

Contour
Estimation
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How to perform the mixup?

● Mixup of generic-domain samples with original samples

B. Feature-Mixup

Mixup
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● Perform mixup as a convex combination with fixed mixup-ratio

A. Edge-Mixup
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Training algorithm

● Our approach can be combined with any existing Source-Free DA algorithm

● Assume a vendor-side algorithm                                that uses the original source dataset

● Assume a client-side algorithm                                that uses the original target dataset

● We simply replace the original datasets with our proposed mixup datasets
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Quantitative results (Image Classification DA)

● Single source domain adaptation

● Multi source domain adaptation

We demonstrate gains over SOTA across single-source, multi-source and also multi-target DA
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Quantitative results (Semantic Segmentation DA)

● Single source domain adaptation

● Multi source domain adaptation

Source datasets
● G → GTA5
● S → Synscapes
● Y → SYNTHIA

GTA5 (G)

Cityscapes

Synthia (Y)

Synscapes (S)

Unlike in Clsf-DA, Edge-Mixup is better suited for dense prediction DA tasks
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Image Ground Truth Vendor-Side GtA (Kundu et al. 2021) Ours (Edge-mixup)

G
G

+S
+Y

Qualitative results (Semantic Segmentation DA)
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Balancing Discriminability and Transferability in Source-Free DA

● We analyze existing DG and SFDA works in terms of Discriminability and Transferability

● To strike a balance, we propose mixup between discriminable original samples and transferable generic samples

domain-transferability

Generic-
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● We achieve SOTA performance with faster convergence across multiple source-free DA settings and tasks



Thanks!

Balancing Discriminability and Transferability for 
Source-Free Domain Adaptation

Please check our project page for more details

https://sites.google.com/view/mixup-sfda
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