

Balancing Discriminability and Transferability for Source-Free Domain Adaptation

Jogendra Nath Kundu*¹ Akshay Kulkarni*¹ Suvaansh Bhambri*¹
Deepesh Mehta¹ Shreyas Kulkarni¹
Varun Jampani² R. Venkatesh Babu¹

¹Indian Institute of Science ²Google Research

Unsupervised Domain Adaptation (DA)[1]

• Problem: Transfer of knowledge from a *labeled* source domain to an *unlabeled* target domain under domain-shift

Preliminaries: Discriminability and Transferability

- Task-Discriminability → Ease of separating different task-category features with a supervised classifier
- Domain-Transferability → Invariance of feature representations across domains

Preliminaries: Discriminability and Transferability tradeoff

- Removing domain-specific info for better transferability may also lead to loss of entangled task-specific info
- Thus, exclusively improving transferability hurts discriminability and vice versa^[3]
- Example: In semantic segmentation DA, contour features improve transferability but reduce discriminability

Introduction Key-insights Approach Results Summary

Can we balance Discriminability and Transferability?

- Prior works^[4,5] propose modified adversarial DA to balance discriminability and transferability
- However, they require concurrent access to both source and target datasets

Can we balance Discriminability and Transferability?

- Prior works^[4,5] propose modified adversarial DA to balance discriminability and transferability
- However, they require concurrent access to both source and target datasets
- These solutions are unsuitable for privacy-oriented source-free DA^[6,7] where data-sharing is restricted

[6] Li et al., "Unsupervised Domain Adaptation without Source Data", CVPR '20[7] Kundu et al., "Towards Inheritable Models for Open-Set Domain Adaptation", CVPR '20

Analyzing existing Domain Generalization (DG) and Source-Free DA works

- SFDA works focus on preserving task-discriminability in the absence of labeled source data
- DG works focus on maximizing domain-transferability in the absence of target data

Introduction Key-insights Approach Results Summary

Why is striking a balance crucial in Source-Free DA (SFDA)?

- In the source-free setting, task-discriminability can only be gathered on the source-side
- The tradeoff becomes more severe as discriminability cannot be preserved with only unlabeled target data
- An explicit effort to improve the tradeoff (green region) could considerably benefit Source-Free DA

What are the key design aspects to improve the tradeoff in SFDA?

- Translate source and target to a generic-domain with both high transferability and discriminability
- In practice, source-to-generic and target-to-generic translations would result in a loss of discriminability
- We propose mixup between original domain samples and corresponding generic-domain translated samples

How to obtain the generic-domain samples?

- A realizable generic-domain must possess features with high domain-transferability
- Edge representation as a generic-domain
 - o Intuitively, edge representation preserves the shape information
 - And removes domain-variant information like color and texture

A. Edge-Mixup x_{s_g} Contour Estimation

How to obtain the generic-domain samples?

- A realizable generic-domain must possess features with high domain-transferability
- Feature-space generic-domain representation
 - We use a set of task-preserving image augmentations to simulate novel sub-domains
 - o Augm. feature mean diffuses the domain-variance and is used as the generic-domain features

How to perform the mixup?

- Mixup of generic-domain samples with original samples
- ullet Perform mixup as a convex combination with fixed mixup-ratio λ

Training algorithm

- Our approach can be combined with any existing Source-Free DA algorithm
- ullet Assume a vendor-side algorithm ${ t VsAlgo}(\mathcal{D}_s)$ that uses the original source dataset
- ullet Assume a client-side algorithm $\mathtt{CsAlgo}(\mathcal{D}_t)$ that uses the original target dataset
- We simply replace the original datasets with our proposed mixup datasets

VsAlgo
$$(\mathcal{D}_{s_m})$$
 CsAlgo (\mathcal{D}_{t_m})

Quantitative results (Image Classification DA)

- Single source domain adaptation
- Multi source domain adaptation

Method	SF	Office-31	VisDA	
CDAN+RADA (Jin et al., 2021)	×	91.1	76.3	
FAA (Huang et al., 2021a)	X	90.8	82.7	
FixBi (Na et al., 2021)	X	91.4	87.2	
HCL (Huang et al., 2021b)	/	87.6	83.5	
CPGA (Qiu et al., 2021)	1	89.9	84.1	
A ² Net (Xia et al., 2021)	1	90.1	84.3	
VDM-DA (Tian et al., 2021)	1	89.7	85.1	
NRC (Yang et al., 2021a)	1	89.4	85.9	
Ours (edge-mixup) + NRC	/	90.3 (+0.9)	86.4 (+0.5)	
Ours (feat-mixup) + NRC	1	90.5 (+1.1)	87.3 (+1.4)	
SHOT++ (Liang et al., 2021)	1	89.2	87.3	
Ours (edge-mixup) + SHOT++	1	90.2 (+1.0)	87.5 (+0.2)	
Ours (feat-mixup) + SHOT++	/	90.7 (+1.5)	87.8 (+0.5)	

We demonstrate gains over SOTA across single-source, multi-source and also multi-target DA

Quantitative results (Image Classification DA)

- Single source domain adaptation
- Multi source domain adaptation

Method	SF	w/o Domain Labels	DomainNet	Office-Home	
SImpAl ₅₀ (Venkat et al., 2020)	X	Х	48.6	72.2	
CMSDA (Scalbert et al., 2021)	X	×	50.4	76.6	
DRT (Li et al., 2021b)	X	×	51.3	-	
STEM (Nguyen et al., 2021)	×	×	53.4	-	
Source-combine	X	√	44.4	66.9	
SHOT (Liang et al., 2020)-Ens	1	×	46.2	74.3	
DECISION (Ahmed et al., 2021)	1	×	45.9	75.5	
CAiDA (Dong et al., 2021)	1	×		76.2	
NRC (Yang et al., 2021a)*	1	✓	47.4	74.7	
Ours(edge-mixup) + NRC	1	1	49.6 (+2.2)	76.6 (+1.9)	
Ours (feature-mixup) + NRC	1	✓	51.0 (+3.6)	77.4 (+2.7) ~	

We demonstrate gains over SOTA across single-source, multi-source and also multi-target DA

Quantitative results (Semantic Segmentation DA)

- Single source domain adaptation
- Multi source domain adaptation

	SF	SSDA		MSDA				
		G	Y	G+S	S+Y	G+Y	G+S+Y	Avg
FDA (Yang et al. 2020)	X	50.5	52.5	-	2	-	4	_
ProDA (Zhang et al., 2021)	X	57.5	62.0	-	-	-	-	-
Src-combine (He et al., 2021)	X	_	-	57.2	53.6	55.5	58.0	56.1
MSDA-CL (He et al., 2021)	X	-	-	65.8	63.1	59.4	67.1	63.8
SFDA (Liu et al., 2021)	/	43.1	45.9	_	-	-	-	-
URMA (Teja et al., 2021)	1	45.1	45.0	-	= 1	-	-	-
SFUDA (Ye et al., 2021)	1	49.4	51.9	_	=	_	-	_
GtA (Kundu et al., 2021)	1	51.6	55.5	63.5	62.8	58.3	63.4	62.0
Ours (feature-mixup)	1	51.9	55.6	63.6	63.2	61.4	64.3	63.1
		+0.3	+0.1	+0.1	+0.4	+3.1	+0.9	+1.1
Ours (edge-mixup)	1	52.6	56.7	64.6	65.4	61.8	64.9	64.2
•		+1.0	+1.2	+1.1	+2.6	+3.5	+1.5	+2.2

Source datasets

- $G \rightarrow GTA5$
- $S \rightarrow Synscapes$
- $Y \rightarrow SYNTHIA$

Unlike in Clsf-DA, Edge-Mixup is better suited for dense prediction DA tasks

Qualitative results (Semantic Segmentation DA)

Balancing Discriminability and Transferability in Source-Free DA

- We analyze existing DG and SFDA works in terms of Discriminability and Transferability
- To strike a balance, we propose mixup between discriminable original samples and transferable generic samples
- We achieve SOTA performance with faster convergence across multiple source-free DA settings and tasks

Thanks!

Balancing Discriminability and Transferability for Source-Free Domain Adaptation

Please check our project page for more details

https://sites.google.com/view/mixup-sfda

Acknowledgement: We thank MeitY, Govt. of India for the research grant.