Nyström Kernel Mean Embeddings

Antoine Chatalic¹, Nicolas Schreuder¹, Alessandro Rudi², Lorenzo Rosasco^{3,1}
¹ DIBRIS and MaLGA, Università di Genova, ² Inria, École normale supérieure, PSL research university, ³ CBMM, MIT, Istituto Italiano di Tecnologia

ICML - July 2022

Introduction

Problem: approximating a kernel mean embedding

$$\mu := \mu(\rho) := \int_{\mathcal{X}} \phi(x) \, \mathrm{d}\rho(x)$$

where $\phi: \mathcal{X} \to \mathcal{H}$ is a feature map associated to a reproducing kernel Hilbert space $(\mathcal{H}, \langle \cdot, \cdot \rangle_{\mathcal{H}})$ with norm $\|\cdot\|$.

Main assumption: there exists $K < \infty$ s.t. $\sup_{x \in \mathcal{X}} \|\phi(x)\| \leq K$.

Applications

• Quadratures in RKHS: The quantity $\left\|\mu - \sum_{j=1}^{m} w_j \phi(x_j)\right\|$ corresponds to the worst-case error (for f in the unit ball of the RKHS) of the approximation

$$\int f(x)\,\mathrm{d}\rho(x)\approx \sum_{j=1}^m w_jf(x_j)$$

Approximate **metrics between distributions**:

$$\mathsf{MMD}(\rho_1,\rho_2) := \|\mu(\rho_1) - \mu(\rho_2)\| \approx \|\hat{\mu}_m(\rho_1) - \hat{\mu}_m(\rho_2)\|.$$

Existing approaches

Empirical estimator: $\hat{\mu} := \mu(\hat{\rho}_n) = \frac{1}{n} \sum_{i=1}^n \phi(x_i).$

- $\blacksquare \text{ Rate: } \|\mu \hat{\mu}\| = O(n^{-1/2})$
- Time complexity: O(n)
- Space complexity: $O(\mathbf{n}d)$
- Complexity of MMD computation: $O(n^2)$

Other approaches:

- **Sampling:** Random features [1], DPPs [2] (no practical/efficient algorithms).
- Incoherence-based selection [3] (limited guarantees), Herding [4].
- Estimators based on Stein's effect [5]. Improves constants but not the rate.

Design a new estimator $\hat{\mu}_m$ computed from m samples which:

- 1. can be computed more efficiently than $\hat{\mu}$;
- 2. preserves the $O(n^{-1/2})$ statistical accuracy of $\hat{\mu}$.

Proposed Method

Idea: project $\hat{\mu}$ on the *m*-dimensional subspace $\mathcal{H}_m := \operatorname{span} \left\{ \phi(\tilde{X}_1), ..., \phi(\tilde{X}_m) \right\}$:

$$\hat{\mu}_m := P_m \hat{\mu} = \sum_{1 \leq j \leq m} w_j \phi(\tilde{X}_j)$$

with:

$$\label{eq:main_matrix} \begin{tabular}{ll} m \ll n \mbox{ and } P_m \mbox{ the projection on } \mathcal{H}_m. \\ \end{tabular} \end{tabu$$

Complexities: time $\Theta(nmd + m^3)$, space $\Theta(md)$.

How small can m be chosen to get the same statistical accuracy as $\hat{\mu}$?

Theoretical Results

We denote:

- $C = \int \phi(x) \otimes \phi(x) d\rho(x)$ the covariance operator.
- $\mathcal{N}(\lambda) := \operatorname{tr}(C(C + \lambda I)^{-1})$ the effective dimension for any $\lambda > 0$.

Theorem: Main result

Assume data points x_1,\ldots,x_n drawn i.i.d. from the probability distribution ρ , and $m\leq n$ sub-samples $\tilde{x}_1,\ldots,\tilde{x}_m$ drawn uniformly with replacement from $\{x_1\ldots,x_n\}$. Then, it holds with probability $\geq 1-\delta$ that

$$\|\mu - \hat{\mu}_m\| \leq \frac{c_1}{\sqrt{n}} + \frac{c_2}{m} + \frac{c_3\sqrt{\log(m/\delta)}}{m}\sqrt{\mathcal{N}\bigg(\frac{12K^2\log(m/\delta)}{m}\bigg)},$$

provided that $m\geq \max(67,12K^2\|C\|_{\mathcal{L}(\mathcal{H})}^{-1})\log(m\!/\!\delta)$, where c_1,c_2,c_3 are constants of order $K\log(1/\delta).$

Corollary: Rates with Additional Hypotheses

Assume that for some c > 0,

- $\blacksquare \text{ either } \mathcal{N}(\lambda) \leq c \lambda^{-\gamma} \text{ for some } \gamma \in]0,1] \text{ and } m = n^{1/(2-\gamma)} \log(n/\delta)$
- or $\mathcal{N}(\lambda) \leq \log(1 + c/\lambda)/\beta$, for some $\beta > 0$ and $m = \sqrt{n} \log(\sqrt{n} \max(1/\delta, c/(6K^2)))$.

Then we get:
$$\|\mu - \hat{\mu}_m\| = O\left(\frac{1}{\sqrt{n}}\right).$$

Empirical Results

On synthetic data (gaussian mixture model in dimension d = 10):

