Optimal Clustering with Noisy Queries via Multi-Armed Bandit

Jinghui Xia¹, Zengfeng Huang¹²

¹School of Data Science, Fudan University ²Shanghai Key Lab of Intelligent Information Processing

The 39th International Conference on Machine Learning, 2022

• A.k.a. clustering with a faulty oracle.

- A.k.a. clustering with a faulty oracle.
- A set V of n vertices (or items).

Figure: n = 40 vertices.

- A.k.a. clustering with a faulty oracle.
- A set V of n vertices (or items).
- Its hidden partition $\{V_1, ..., V_k\}$.

Figure: k = 4 hidden clusters.

- A.k.a. clustering with a faulty oracle.
- A set V of n vertices (or items).
- Its hidden partition $\{V_1, ..., V_k\}$.

Figure: The algorithm makes a query.

- A.k.a. clustering with a faulty oracle.
- A set V of n vertices (or items).
- Its hidden partition $\{V_1, ..., V_k\}$.
- A (faulty) oracle that answers whether two vertices belong to the same cluster.

Figure: The oracle answers the query.

- A.k.a. clustering with a faulty oracle.
- A set V of n vertices (or items).
- Its hidden partition $\{V_1, ..., V_k\}$.
- A (faulty) oracle that answers whether two vertices belong to the same cluster.
- $\mathbb{P}(\text{answer is correct}) = \frac{1}{2} + \frac{\delta}{2}.$

Figure: The oracle answers the query.

- A.k.a. clustering with a faulty oracle.
- A set V of n vertices (or items).
- Its hidden partition $\{V_1, ..., V_k\}$.
- A (faulty) oracle that answers whether two vertices belong to the same cluster.
- $\mathbb{P}(\text{answer is correct}) = \frac{1}{2} + \frac{\delta}{2}.$
- Goal: recover the hidden clusters with minimum number of queries.

Figure: The oracle answers the query.

Clustering with Noisy Queries (cont.)

Define function $\tau: V \times V \rightarrow \pm 1$ s.t.

$$\tau(u, v) = \begin{cases} +1, & V_{c(u)} = V_{c(v)}, \\ -1, & V_{c(u)} \neq V_{c(v)}. \end{cases}$$

The oracle is equivalent to a noisy version of τ , denoted as $\tilde{\tau}$:

$$\tilde{\tau} = \sigma_{u,v} \cdot \tau(u,v),$$

where $\sigma_{u,v}$ is a $\{\pm 1\}$ random variable attaining +1 with probability $\frac{1}{2} + \frac{\delta}{2}$, and -1 with probability $\frac{1}{2} - \frac{\delta}{2}$.

We assume that $\sigma_{u,v}$ is independent across different pairs and the oracle always returns the same answer for queries to the same pair.

Previous Results

Paper	#Clusters	Query Complexity	Time Complexity
[MS'17] ¹	k	$O(\frac{nk\log n}{\delta^2})$	Quasi-polynomial
		$O(\frac{nk\log n}{\delta^2} + \frac{k^5\log^2 n}{\delta^3})$	Polynomial
		$\Omega(\frac{nk}{\delta^2})$	
[LMT'20] ²	2	$O(\frac{n\log n}{\delta^2} + \frac{\log^2 n}{\delta^6})$	Polynomial
[PZ'21] ³	k	$O(\frac{nk\log n}{\delta^2} + \frac{k^{10}\log^2 n}{\delta^4})$	Polynomial
This work	k	$O(\frac{n(k+\log n)}{\delta^2} + \frac{k^8 \log^3 n}{\delta^4})$	Polynomial
		$\Omega(\frac{n\log n}{\delta^2})$	

¹Mazumdar, A. and Saha, B. Clustering with noisy queries. NeurIPS, 2017.

 $^2 {\sf Larsen},$ K. G., Mitzenmacher, M., and Tsourakakis, C. Clustering with a faulty oracle. WWW, 2020.

 3 Peng, P. and Zhang, J. Towards a query-optimal and time-efficient algorithm for clustering with a faulty oracle. COLT, 2021

Jinghui Xia, Zengfeng Huang

Optimal Clustering with Noisy Queries

Previous Results

Paper	#Clusters	Query Complexity	Time Complexity
[MS'17] ¹	k	$O(\frac{nk\log n}{\delta^2})$	Quasi-polynomial
		$O(\frac{nk\log n}{\delta^2} + \frac{k^5\log^2 n}{\delta^3})$	Polynomial
		$\Omega(\frac{nk}{\delta^2})$	
[LMT'20] ²	2	$O(\frac{n\log n}{\delta^2} + \frac{\log^2 n}{\delta^6})$	Polynomial
[PZ'21] ³	k	$O(\frac{nk\log n}{\delta^2} + \frac{k^{10}\log^2 n}{\delta^4})$	Polynomial
This work	k	$O(\frac{n(k+\log n)}{\delta^2} + \frac{k^8 \log^3 n}{\delta^4})$	Polynomial
		$\Omega(\frac{n\log n}{\delta^2})$	

¹Mazumdar, A. and Saha, B. Clustering with noisy queries. NeurIPS, 2017.

 $^2 Larsen,\,K.$ G., Mitzenmacher, M., and Tsourakakis, C. Clustering with a faulty oracle. WWW, 2020.

 3 Peng, P. and Zhang, J. Towards a query-optimal and time-efficient algorithm for clustering with a faulty oracle. COLT, 2021

Jinghui Xia, Zengfeng Huang

Optimal Clustering with Noisy Queries

- 1 Find sub-clusters (or biased sets⁴). E.g.[PZ'21].
- 2 Cluster the vertices.

Compare each vertex to the sub-clusters (or biased sets) to find the true cluster. Require $O(\frac{nk \log n}{\delta^2})$ queries in previous works.

Figure: Sample a subset $T \subset V$ of certain size.

⁴A set of vertices $B \subseteq V$ is called (η, C) -biased if at least $1/2 + \eta$ fraction of the vertices in B belong to a true cluster C, i.e. $|B \cap C| \ge (1/2 + \eta) \cdot |B|$.

- 1 Find sub-clusters (or biased sets⁴). E.g.[PZ'21].
- 2 Cluster the vertices.

Compare each vertex to the sub-clusters (or biased sets) to find the true cluster. Require $O(\frac{nk \log n}{\delta^2})$ queries in previous works.

Figure: Query all pairs of vertices in T to construct an SBM-type graph.

⁴A set of vertices $B \subseteq V$ is called (η, C) -biased if at least $1/2 + \eta$ fraction of the vertices in B belong to a true cluster C, i.e. $|B \cap C| \ge (1/2 + \eta) \cdot |B|$.

Jinghui Xia, Zengfeng Huang

Optimal Clustering with Noisy Queries

ICML 2022

- 1 Find sub-clusters (or biased sets⁴). E.g.[PZ'21].
- 2 Cluster the vertices.

Compare each vertex to the sub-clusters (or biased sets) to find the true cluster. Require $O(\frac{nk \log n}{\delta^2})$ queries in previous works.

Figure: Partition the graph to get sub-clusters (or biased sets).

⁴A set of vertices $B \subseteq V$ is called (η, C) -biased if at least $1/2 + \eta$ fraction of the vertices in B belong to a true cluster C, i.e. $|B \cap C| \ge (1/2 + \eta) \cdot |B|$.

- 1 Find sub-clusters (or biased sets⁴). E.g.[PZ'21].
- 2 Cluster the vertices.

Compare each vertex to the sub-clusters (or biased sets) to find the true cluster. Require $O(\frac{nk \log n}{s^2})$ queries in previous works.

Figure: Compare each vertex to the sub-clusters.

- 1 Find sub-clusters (or biased sets⁴). E.g.[PZ'21].
- 2 Cluster the vertices.

Consider each sub-cluster as an arm. Identifying the cluster of each vertex can be reduced to a best arm identification problem. $O(\frac{k}{\delta^2} \log \frac{1}{\alpha})$ queries for each vertex to identify the true cluster with probability at least $1 - \alpha$.

Figure: Consider each sub-cluster as an arm.

Theorem

There exists a polynomial time algorithm that recovers all the clusters of size $\Omega(\frac{k^4 \log n}{\delta^2})$ with success probability $1 - o_n(1)$. The total number of queries to the faulty oracle is

$$O\left(\frac{n(k+\log n)}{\delta^2}+\frac{k^8\log^3 n}{\delta^4}\right)$$

Define a variant of the best arm identification problem, denoted as (δ, α) -BAIF, where we allow the algorithm to fail (not return any arm) with probability at most 1/8.

We prove that sample complexity lower bound for (δ, α) -BAIF is still $\Omega(\frac{1}{\delta^2} \log \frac{1}{\alpha})$, same as regular BAI.

By some reduction from BAIF to clustering with noisy queries, we can prove the following lower bound.

Theorem

For $k \ge 2$, any (randomized) algorithm must make $\Omega(\frac{n \log n}{\delta^2})$ expected number of queries to recover the correct clusters with probability at least $\frac{7}{8}$.

Thus combined with previous $\Omega(\frac{nk}{\delta^2})$ lower bound, we obtain matching upper and lower bounds $\Theta(\frac{n(k+\log n)}{\delta^2})$.

- A novel polynomial time algorithm for clustering with noisy queries problem.
- Query complexity upper bound $O(\frac{n(k+\log n)}{\delta^2} + \frac{k^8 \log^3 n}{\delta^4})$.
- Query complexity lower bound $\Omega(\frac{n \log n}{\delta^2})$.

For details of our work, please refer to our paper

Optimal Clustering with Noisy Queries via Multi-Armed Bandit