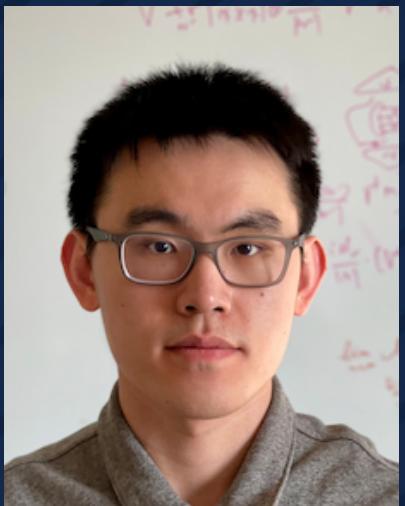


Provable Domain Generalization via Invariant-Feature Subspace Recovery

ICML 2022



Haoxiang Wang
PhD Candidate
ECE, UIUC

Haozhe Si
Master Student
ECE, UIUC

Bo Li
Assistant Professor
Computer Science, UIUC

Han Zhao
Assistant Professor
Computer Science, UIUC

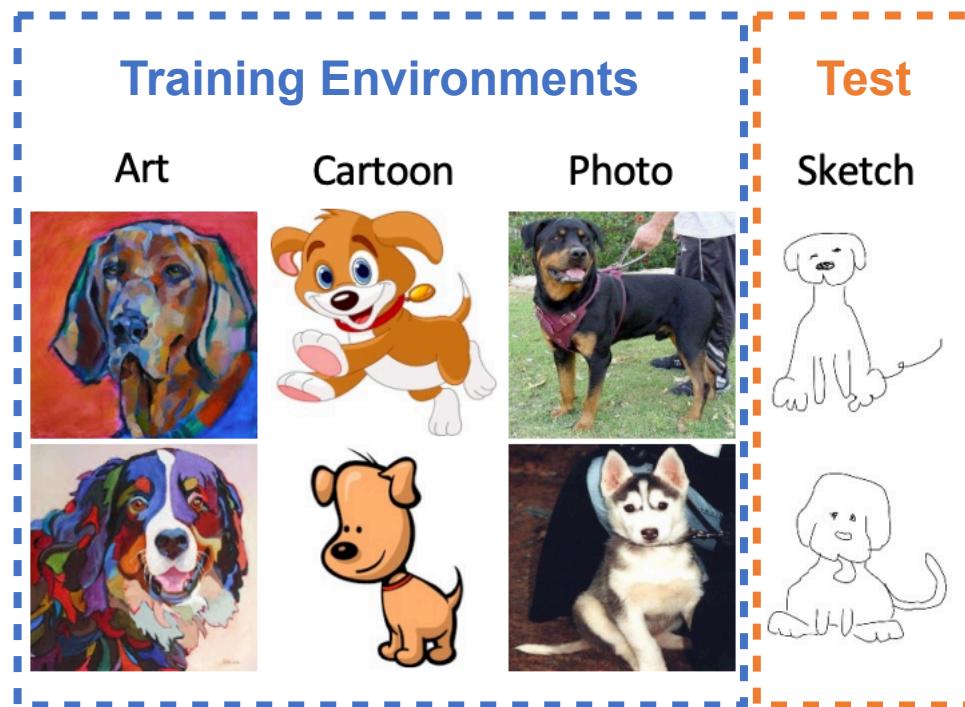
Task: Domain Generalization — Spurious Correlations

I

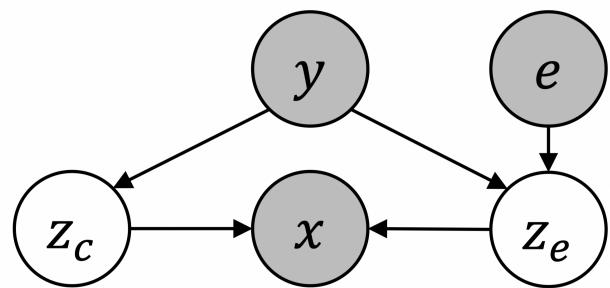
Domain Generalization (OOD Generalization)

Perspective

Spurious Correlation



label: object		
	waterbird	landbird
spurious attribute: background	water background	 majority
	land background	 minority
land background	minority	 minority
	majority	 majority



In arbitrary training environment $e = 1, 2, \dots, E$,
a sample (x, y, e) is generated by:

$$y = \begin{cases} 1, & \text{with probability } \eta \\ -1, & \text{otherwise} \end{cases}$$

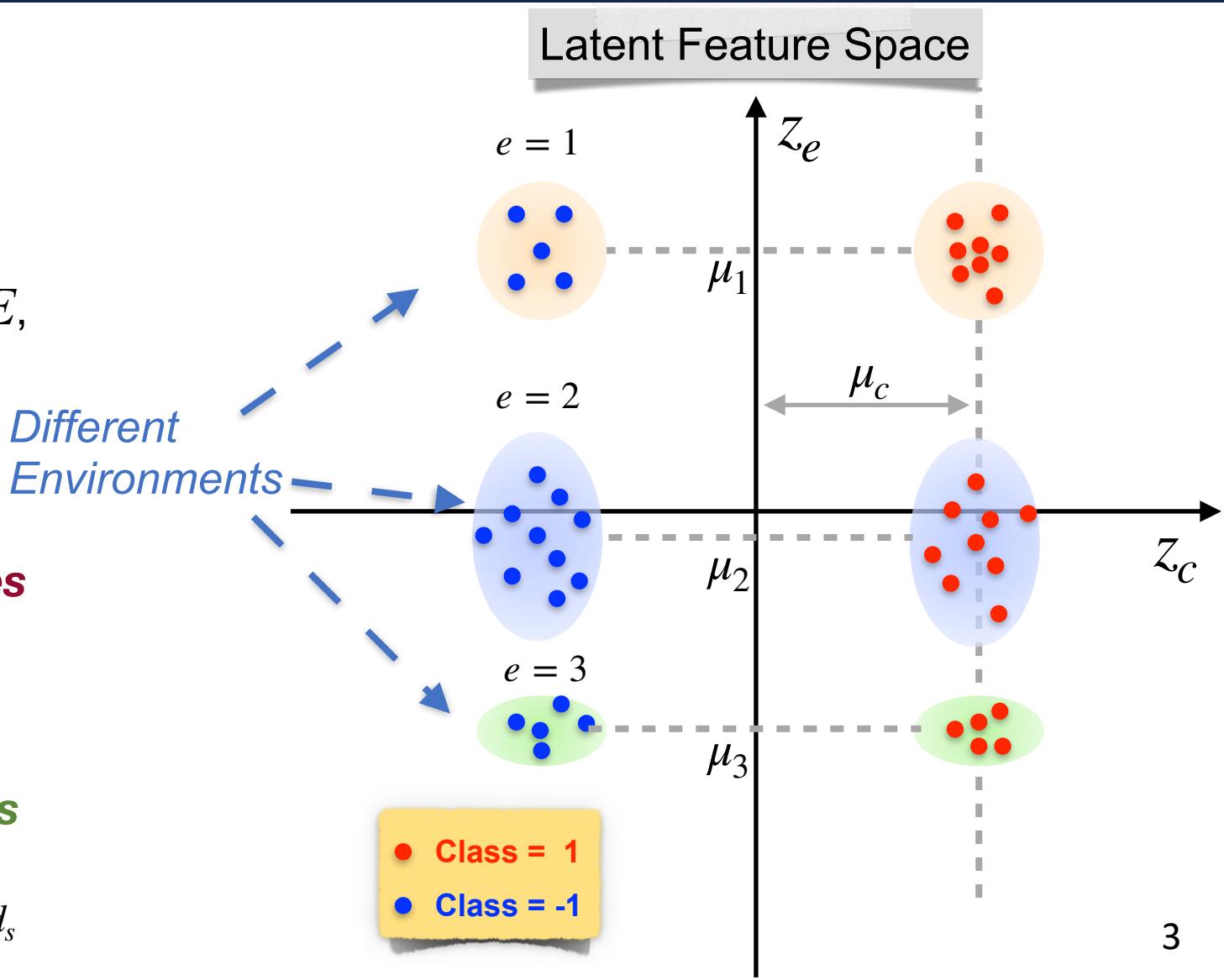
Invariant Features

$$z = \begin{bmatrix} z_c \\ z_e \end{bmatrix} \left\{ \begin{array}{l} z_c \sim \mathcal{N}(y\mu_c, \sigma_c^2 I) \in \mathbb{R}^{d_c} \\ z_e \sim \mathcal{N}(y\mu_e, \sigma_e^2 I) \in \mathbb{R}^{d_s} \end{array} \right.$$

Spurious Features

$$x = Az_c + Bz_e \in \mathbb{R}^d,$$

where, $d = d_c + d_s, A = \mathbb{R}^{d \times d_c}, B = \mathbb{R}^{d \times d_s}$



IRM optimizes a bi-level objective over a feature extractor Φ and a classifier β (assumed both to be **linear** here)

$$\min_{\Phi, \beta} \sum_{e \in [E]} \mathcal{R}^e(\Phi, \beta)$$

$$\text{s.t. } \beta \in \arg \min_{\beta} \mathcal{R}^e(\Phi, \beta) \quad \forall e \in [E]$$

Goal of IRM \rightarrow *Optimal Invariant Predictor (OIP)*

Given $x = [A \ B] \begin{bmatrix} z_c \\ z_e \end{bmatrix}$, an example of OIP is:

$$\Phi^*(x) = \begin{bmatrix} z_c \\ 0 \end{bmatrix} \quad (\text{keep invariant features only})$$

β^* is the optimal classifier w.r.t. $\{(\Phi^*(x), y)\}$

Assumption 1 [Mean]. For $\{\mu_e\}_{e=1}^E$, each element cannot be expressed as an affine combination of the rest.

Assumption 2 [Covariance]. There exists a pair of distinct environments $e, e' \in [E]$ s.t. $\sigma_e \neq \sigma_{e'}$.

Linear Environment Complexity: as $E > d_s$, the global optimum of IRM is guaranteed to be an optimal invariant predictor (*proved in [Rosenfeld et al. ICLR 2021]*).

Convergence Issue: IRM has no global convergence guarantee due to non-convexity.

Goal of ISR: Find the feature subspace spanned by invariant features only.

Algorithm 1 ISR-Mean

Input: Data of all training environments, $\{\mathcal{D}_e\}_{e \in [E]}$.

for $e = 1, 2, \dots, E$ **do**

 Estimate the sample mean of $\{x | (x, y) \in \mathcal{D}_e, y = 1\}$
 as $\bar{x}_e \in \mathbb{R}^d$

end for

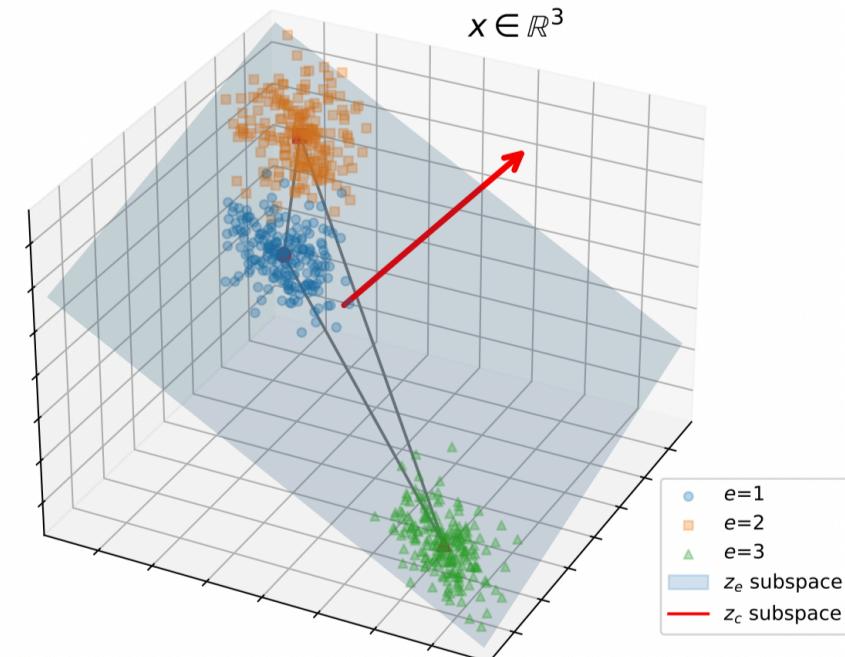
I. Construct a matrix $\mathcal{M} \in \mathbb{R}^{E \times d}$ with the e -th row as \bar{x}_e^\top
 for $e \in [E]$

II. Apply PCA to \mathcal{M} to obtain eigenvectors $\{P_1, \dots, P_d\}$
 with eigenvalues $\{\lambda_1, \dots, \lambda_d\}$

III. Stack d_c eigenvectors with the lowest eigenvalues to
 obtain a transformation matrix $P' \in \mathbb{R}^{d_c \times d}$

IV. Fit a linear classifier (with $w \in \mathbb{R}^{d_c}$, $b \in \mathbb{R}$) by ERM
 over all training data with transformation $x \mapsto P'x$

Obtain a predictor $f(x) = w^\top P'x + b$



Linear Environment Complexity: Same as IRM.

Global Convergence: ISR-Mean enjoys global convergence guarantees.

Less Assumptions than IRM: Only Need Assumption 1 [Mean] & No need for Assumption 2 [Covariance].

Algorithm 2 ISR-Cov

Input: Data of all training environments, $\{\mathcal{D}_e\}_{e \in [E]}$.

for $e = 1, 2, \dots, E$ **do**

 Estimate the sample covariance of $\{x | (x, y) \in \mathcal{D}_e, y = 1\}$ as $\Sigma_e \in \mathbb{R}^{d \times d}$

end for

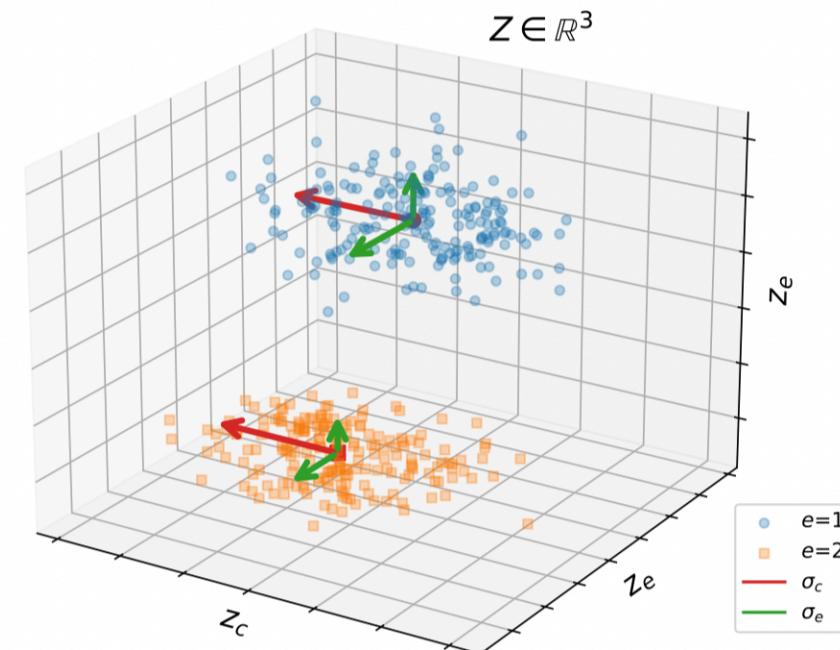
I. Select a pair of environments e_1, e_2 such that $\Sigma_1 \neq \Sigma_2$, and compute their difference, $\Delta\Sigma := \Sigma_{e_1} - \Sigma_{e_2}$

II. Eigen-decompose $\Delta\Sigma$ to obtain eigenvectors $\{P_1, \dots, P_d\}$ with eigenvalues $\{\lambda_1, \dots, \lambda_d\}$

III. Stack d_c eigenvectors of eigenvalues with lowest absolute values to obtain a matrix $P' \in \mathbb{R}^{d_c \times d}$

IV. Fit a linear classifier (with $w \in \mathbb{R}^{d_c}$, $b \in \mathbb{R}$) by ERM over all training data with transformation $x \mapsto P'x$

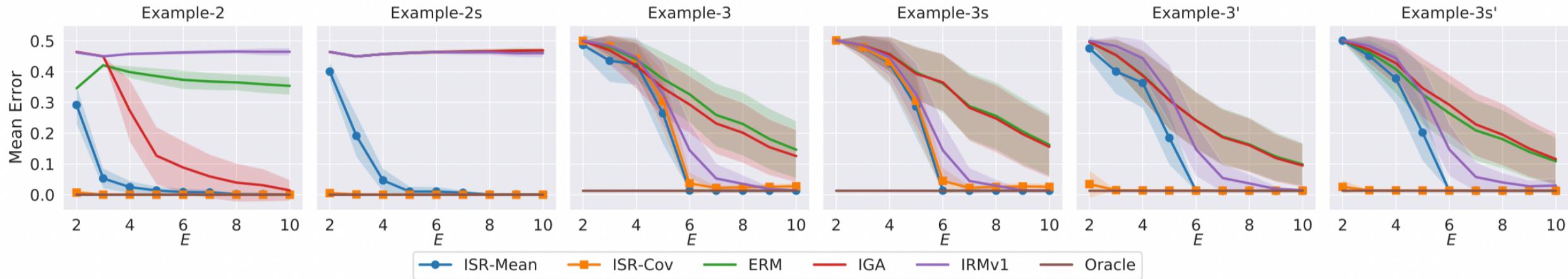
Obtain a predictor $f(x) = w^\top P'x + b$



$O(1)$ Environment Complexity: Only needs 2 environments \longrightarrow optimal invariant predictor.

Global Convergence: ISR-Cov enjoys global convergence guarantees.

Less Assumptions than IRM: Only Need Assumption 2 [Covariance] & No need for Assumption 1 [Mean].



Test results on Linear Unit-Tests (first 4 plots) and its variants (last 2 plots), where $d_c = 5$, $d_s = 5$, and $E = 2, \dots, 10$.
 $P(Y | \mu_c)$ is invariant across environments.

ISR-Mean

Linear Environment Complexity: Error is reduced to zero as $E > d_s$

Better Performance than IRM: Global convergence of ISR-Mean.

ISR-Cov

O(1) Environment Complexity: Error is reduced to zero as $E \geq 2$ for datasets that satisfy Assumption 2 [Covariance].

Benchmarks: three datasets used by [Sagawa et al. ICLR 2020] to study the robustness of models against spurious correlations and group shifts.

Common Training Examples

Waterbird **Y:** waterbird
A: water background

Y: landbird
A: land background

CelebA **Y:** blond hair
A: female

Y: dark hair
A: male

MultiNLI **Y:** contradiction
A: has negation

(P) Abortive countrywide revolts. (H) There is no revolt.

Y: entailment
A: no negation

(P) The sacred is not mysterious to her. (H) The woman is familiar with the sacred.

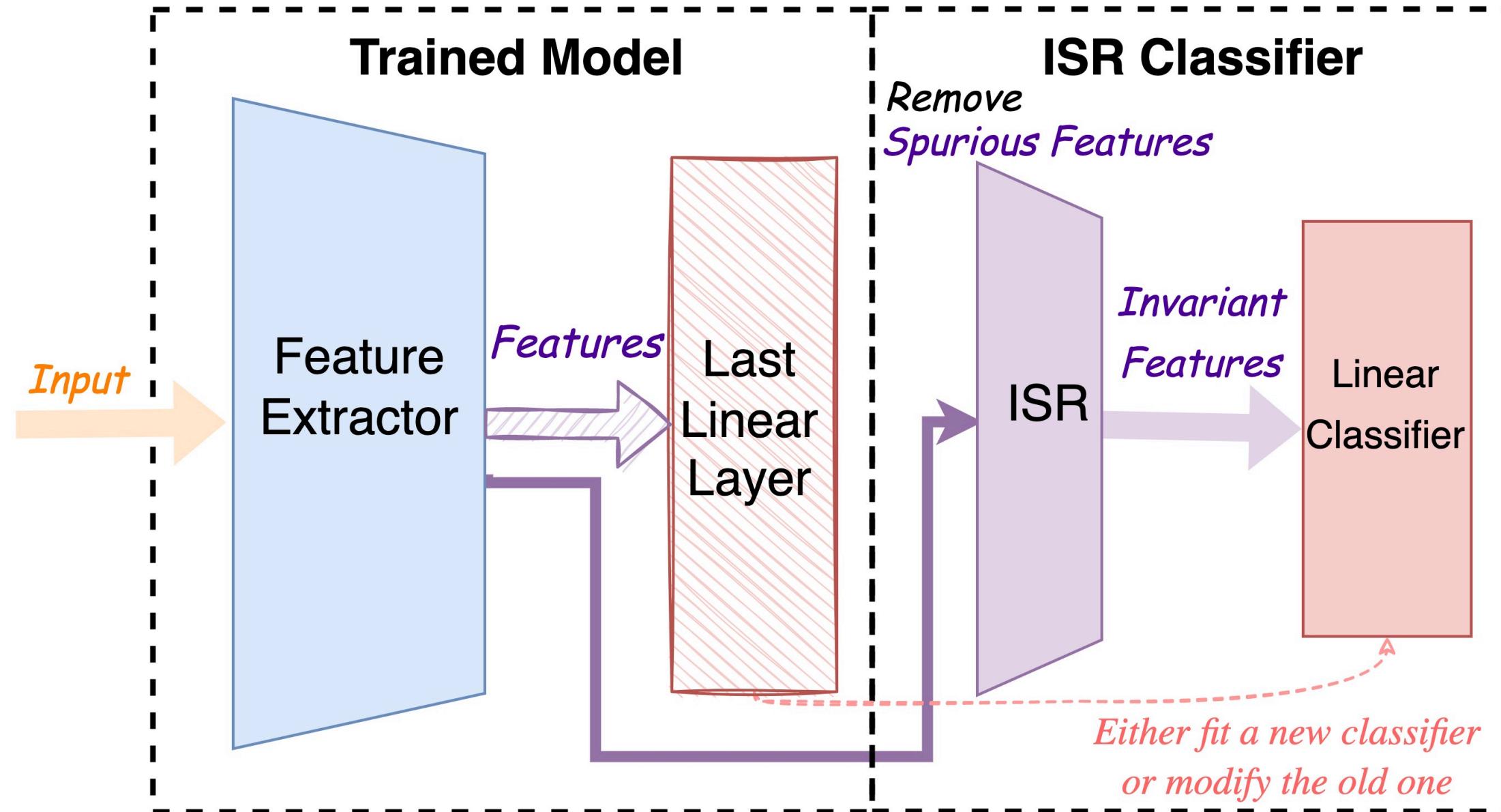
Test Examples

Y: landbird
A: water background

Y: blond hair
A: male

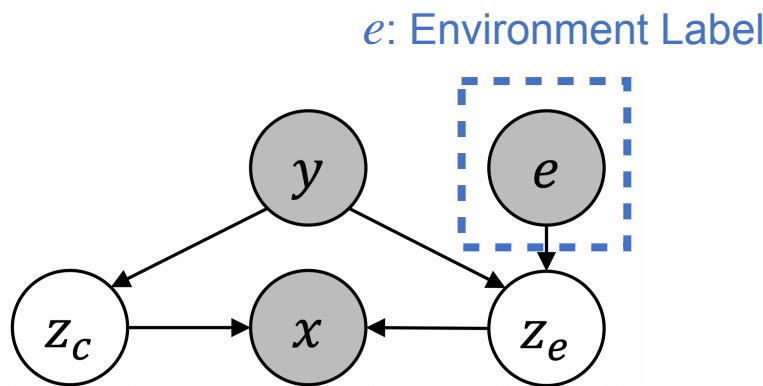
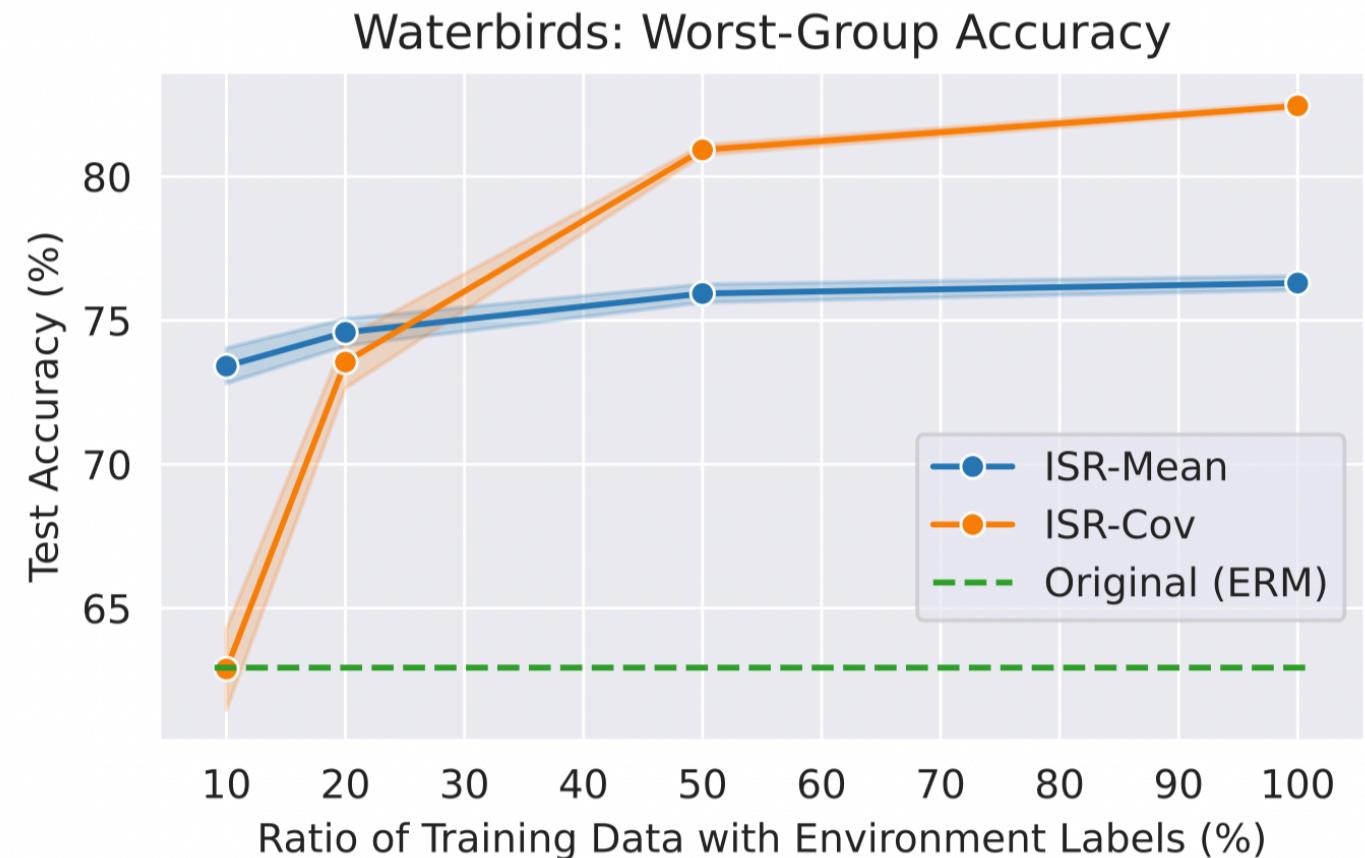
Y: entailment
A: has negation

(P) Fixing current levels of damage would be impossible. (H) Fixing the damage could never be done.



Dataset	Backbone	Algorithm	Average Accuracy			Worst-Group Accuracy		
			Original	ISR-Mean	ISR-Cov	Original	ISR-Mean	ISR-Cov
Waterbirds	ResNet-50	ERM	86.66 \pm 0.67	87.87 \pm 0.80	90.47\pm0.33	62.93 \pm 5.37	76.10 \pm 1.11	82.46\pm0.55
		Reweighting	91.49 \pm 0.46	91.77\pm0.52	91.63 \pm 0.44	87.69 \pm 0.53	88.02 \pm 0.42	88.67\pm0.55
		GroupDRO	92.01 \pm 0.33	91.74 \pm 0.35	92.25\pm0.27	90.79 \pm 0.47	90.42 \pm 0.61	91.00\pm0.45
CelebA	ResNet-50	ERM	95.12\pm0.34	94.34 \pm 0.12	90.12 \pm 2.59	46.39 \pm 2.42	55.39 \pm 6.13	79.73\pm5.00
		Reweighting	91.45\pm0.50	91.38 \pm 0.51	91.24 \pm 0.35	84.44 \pm 1.66	90.08\pm0.50	88.84 \pm 0.57
		GroupDRO	91.82\pm0.27	91.82 \pm 0.27	91.20 \pm 0.23	88.22 \pm 1.67	90.95\pm0.32	90.38 \pm 0.42
MultiNLI	BERT	ERM	82.48\pm0.40	82.11 \pm 0.18	81.28 \pm 0.52	65.95 \pm 1.65	72.60 \pm 1.09	74.21\pm2.55
		Reweighting	80.82\pm0.79	80.53 \pm 0.88	80.73 \pm 0.90	64.73 \pm 0.32	67.87\pm0.21	66.34 \pm 2.46
		GroupDRO	81.30\pm0.23	81.21 \pm 0.24	81.20 \pm 0.24	78.43 \pm 0.87	78.95\pm0.95	78.91 \pm 0.75

- ISR classifiers can persistently **improve the worst-group accuracy** of trained models
→ *ISR classifiers rely less on spurious features than original classifiers*
- The **average accuracy** of ISR classifiers is maintained around **the same level as** the original classifiers.

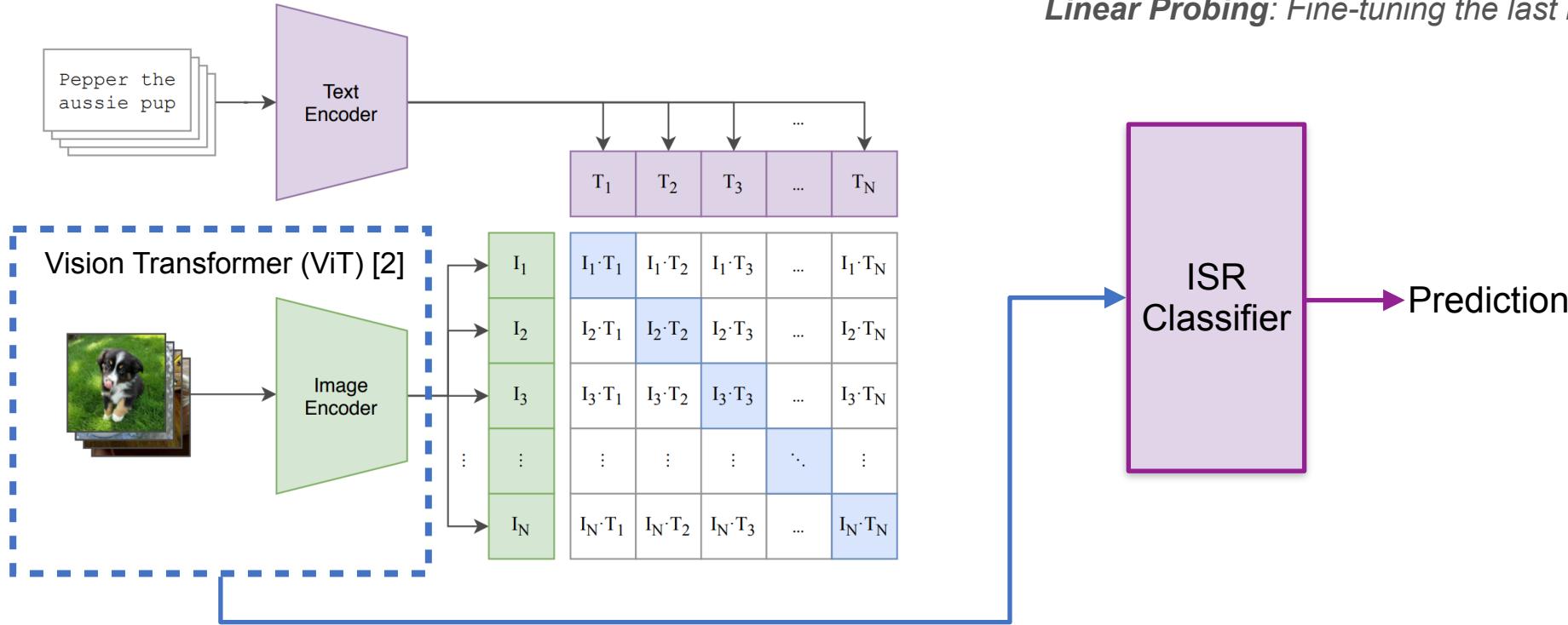


ISRs can be used in cases where only **a subset of** training samples have environment labels.

ISRs for Pre-trained Feature Extractors (No need for neural net training!)

Dataset	Backbone	Algorithm	Average Accuracy			Worst-Group Accuracy		
			Linear Probing	ISR-Mean	ISR-Cov	Linear Probing	ISR-Mean	ISR-Cov
Waterbirds	CLIP (ViT-B/32)	ERM	76.42±0.00	90.27±0.09	76.80±0.01	52.96±0.00	71.75±0.39	55.76±0.00
		Reweighting	87.38±0.09	88.23±0.12	88.07±0.05	82.51±0.27	85.13±0.22	83.33±0.00

Contrastive Language-Image Pre-training (CLIP) [1]



[1] Radford et al. *Learning Transferable Visual Models From Natural Language Supervision*. 2021

[2] Dosovitskiy et al. *An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale*. ICLR 2021

Thank you for watching this presentation!

Code: <https://github.com/Haoxiang-Wang/ISR>

Contact Information:

- Haoxiang Wang: hwang264@illinois.edu
- Haozhe Si: haozhes3@illinois.edu
- Bo Li: lbo@illinois.edu
- Han Zhao: hanzhao@illinois.edu