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Task: Domain Generalization — Spurious Correlations
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Problem Setup and Data Generation Process [Rosenfeld at al. ICLR 2021]
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Invariant Risk Minimization (IRM) & Optimal Invariant Predictor

IRM optimizes a bi-level objective over a feature
extractor @ and a classifier # (assumed both to be

linear here) E

Assumption 1 [Mean]. For{y,},_;, each
min 2 RE(D, ) element cannot be expressed as an affine
.5 ec|E] combination of the rest.
st. f € argmin Z(D, ) Ve € [E] Assumption 2 [Covariance]. There exists a pair
p of distinct environments e, e’ € [E] s.t. 6, # 0, .

Goal of IRM — Optimal Invariant Predictor (OIP)

Linear Environment Complexity: as £ > ds, the

. ZC .
Givenx = [A B] ’Zj , an example of OIP is: global optimum of IRM is guaranteed to be an
optimal invariant predictor (proved in [Rosenfeld
at al. ICLR 2021])).

Convergence Issue: IRM has no global

<
O*(x) = [OC] (keep invariant features only)
convergence guarantee due to non-convexity.

[* is the optimal classifier w.r.t. {(®*(x),y)}



Invariant-Feature Subspace Recovery (ISR) — First Algorithm

X € R3

Algorithm 1 ISR-Mean

Input: Data of all training environments, {De } cc[f]-
fore=1,2,...,Edo
Estimate the sample mean of {x|(z,y) € D,y = 1}
as T, € R?
end for
I. Construct a matrix M € R¥*4 with the e-th row as z]
for e € [E]

II. Apply PCA to M to obtain eigenvectors { P, ..., P4} Linear Environment Complexity: Same as IRM.

;&illthsetlgf;(n;alués {)\l,i'.,)\d}thth . . Global Convergence: ISR-Mean enjoys global
- DACK d. €1gENveCtlors wi € 10WeESL €1genvalues to convergence guaranteeS.

obtain a transformation matrix P’ € R *d

IV. Fit a linear classifier (with w € R%, b e R) by ERM €SS Assumptions than IRM: Only Need
over all training data with transformation z — P’z Assumption 1 [Mean] & No need for Assumption 2

Obtain a predictor f(x) = w'P'z + b [Covariance].

Ze subspace
—— Z. subspace
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Invariant-Feature Subspace Recovery (ISR) — Second Algorithm

Algorithm 2 ISR-Cov

Input: Data of all training environments, {De }cc[5]-
fore=12,...,Edo
Estimate the sample covriance of {z|(z,y) € D,y =
1} as 3, € Réx4
end for
L. Select a pair of environments eq, e; such that 33, # 3o,
and compute their difference, AY = ., — 3,
II. Eigen-decompose AY to obtain eigenvectors
{Py,..., Py} with eigenvalues {1, ..., Ag}
III. Stack d. eigenvectors of eigenvalues with lowest
absolute values to obtain a matrix P’ € R%:*4d
IV. Fit a linear classifier (with w € R%, b € R) by ERM
over all training data with transformation z — P’z
Obtain a predictor f(z) = w'P'z + b
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O(1) Environment Complexity: Only needs 2
environments — optimal invariant predictor.

Global Convergence: ISR-Cov enjoys global
convergence guarantees.

Less Assumptions than IRM: Only Need
Assumption 2 [Covariance] & No need for
Assumption 1 [Mean].



Experiment on Synthetic Datasets: Linear Unit-Tests [Aubin et al. 2021]

Example-2 Example-2s Example-3 Example-3s Example-3' Example-3s'
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Test results on Linear Unit-Tests (first 4 plots) and its variants (last 2 plots), where d. = 5,d, =5,and E =2, .. ., 10.

P(Y | u,) is invariant across environments.

Linear Environment Complexity: Error is reduced to zero as £ > d,
Better Performance than IRM: Global convergence of ISR-Mean.

ISR-Mean

ISR-Cov  ©O(1) Environment Complexity: Error is reduced to zero as E > 2 for datasets that
satisfy Assumption 2 [Covariance].



Experiments on Real Datasets

Benchmarks: three datasets used by [Sagawa et al. ICLR 2020] to study the robustness of models
against spurious correlations and group shifts.

Common Training Examples Test Examples
& L, : : S
Waterbird Y: waterbird Y: landbird B S Y: landbird -
A: water background . A: land background A: water background
Y: Y: dark hair Y:
CelebA A: A: male A: male
Y: contradiction Y: entailment Y: entailment
MultiNLI A: has negation A: no negation . At has negation
(P) Abortive countrywide revolts. (P) The sacred is not mysterious to her. . (P) Fixing current levels of damage would be impossible.
(H) There is no revolt. (H) The woman is familiar with the sacred.* (H) Fixing the damage could never be done.



ISR as Post-Processing for Trained Models: ISR Classifier on Feature Extractors E
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Experiments on Real Datasets

Dataset Backbone Algorithm Average Accuracy Worst-Group Accuracy
Original ISR-Mean  ISR-Cov Original ISR-Mean ISR-Cov

Waterbirds ResNet-50 ERM 86.66+0.67 87.87+0.80 90.47+0.33 62.93+5.37 |76.10+1.11 82.46+0.55
Reweighting 91.49+0.46 91.77+0.52 91.63+0.44  87.69+0.53 }88.02+0.42 88.67+0.55
GroupDRO  92.01+£0.33 91.74+0.35 92.25+0.27 90.79+0.47 |90.42+0.61 91.00+0.45
CelebA  ResNet-50 ERM 95.12+0.34 94.34+0.12 90.12+2.59  46.39+2.42 }55.39+6.13 79.73+5.00
Reweighting 91.45+0.50 91.38+0.51 91.244+0.35 84.44+1.66 |90.08+0.50 88.84+0.57
GroupDRO  91.82+0.27 91.82+0.27 91.20+0.23  88.22+1.67 |90.95+0.32 90.38+0.42
MultiNLI BERT ERM 82.48+0.40 82.11+0.18 81.2840.52  65.95+1.65 |72.60+1.09 74.21+2.55
Reweighting 80.82+0.79 80.53+0.88 80.73+090  64.73+0.32 |67.87+0.21 66.34+2.46
GroupDRO  81.30+0.23 81.21+0.24 81.20+0.24  78.43+0.87 |78.95+0.95 78.91+0.75

~ ISR classifiers can persistently improve the worst-group accuracy of trained models

— ISR classifiers rely less on spurious features than original classifiers

- The average accuracy of ISR classifiers is maintained around the same level as the original

classifiers.




Experiments on Real Datasets: Partial Environment Labels

Waterbirds: Worst-Group Accuracy
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ISRs can be used in cases where only a subset of training samples have environment labels.
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ISRs for Pre-trained Feature Extractors (No need for neural net training!)

Dataset Backbone Algorithm Average Accuracy Worst-Group Accuracy
Linear Probing | ISR-Mean ISR-Cov Linear Probing | ISR-Mean ISR-Cov
Waterbirds CLIP (ViT-B/32) ERM 76.421+0.00 | 90.27+0.09 76.80+0.01 52.96+0.00 | 71.754+0.39 55.76+0.00
Reweighting  87.38+0.09 | 88.23+0.12 88.07+0.05 82.51+0.27 | 85.13+0.22 83.33+0.00

Contrastive Language-lmage Pre-training (CLIP) [1]

\‘ Linear Probing: Fine-tuning the last linear layer only.
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Thank you for watching this presentation!

Code: https://github.com/Haoxiang-Wang/ISR

Contact Information:

e Haoxiang Wang: hwang264@illinois.edu
e Haozhe Si: haozhes3@illinois.edu

e Bo Li: Ibo@illinois.edu

e Han Zhao: hanzhao@illinois.edu
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