Off-Policy Fitted Q-Evaluation with Differentiable Function Approximators: Z-Estimation and Inference Theory

Joint work with Xuezhou Zhang(Princeton), Chengzhuo Ni(Princeton), Mengdi Wang(Princeton and DeepMind)

Ruiqi Zhang

June, 2022

OPE(Off Policy Evaluation)

- Environment: $\mathcal{MDP}(\mathcal{S}, \mathcal{A}, \mathcal{P}, r, \xi, H)$
- Using behavior policy $\overline{\pi}$ to generate batch data $\mathcal{D} = \{(s_n, a_n, s_{n+1}, r_n)\}_{n \in [N]}$.
- Estimate policy value v_{π} under target policy π .

Common Methods:

Importance Sampling: IS, WIS, MIS, etc.
Hybrid Method: Doubly Robust, etc.
Direct Method: Fitted Q-Evaluation(FQE), etc.

FQE with Function Approximation.

- Initialize: $\widehat{Q}_{H+1}^{\pi}(s,a) = 0, \forall (s,a) \in \mathcal{S} \times \mathcal{A}.$
- For h=H,H-1,...,1, Solve ($\lambda>0$ and ρ is a regularizer)

$$\widehat{Q}_h^{\pi} = \operatorname*{arg\,min}_{f \in \mathcal{F}} \left\{ \frac{1}{N} \sum_{n=1}^{N} \left[f(s_n, a_n) - y_n \right]^2 + \lambda \rho(f) \right\},\tag{1}$$

where $y_n = r(s_n, a_n) + \int_{\mathcal{A}} \widehat{Q}_{h+1}^{\pi}(s_{n+1}, a) \pi(a \mid s_{n+1}) da$.

• Return $\widehat{v}_{\pi} = \int_{\mathcal{S} \times \mathcal{A}} \widehat{Q}_1(s, a) \pi(a|s) \xi(s) da ds$.

Problem: What is \mathcal{F} ?

Many OPE methods leverage function approximation to avoid exponentially large variance, that is, using a function class \mathcal{F} to approximate $Q_h^{\pi}(s,a)$.

The choice of \mathcal{F} :

- (Xie et al. 19), (Yin et al. 20): Tabular Class: S and A are finite.
- (Duan et al. 20), (Hao et al. 21): Linear Class $\mathcal{F} = \{w^{\top} \cdot \phi(s, a)\}$
- (Kallus et al. 20), (Chen et al. 22), (Ji et al. 22): Non-parametric class.
- Our work: General Differentiable Parametric Class

 $\mathcal{F} = \left\{ f(\theta; \phi(s, a)) : \theta \in \Theta \right\}, \quad \text{ where } f \text{ is third-time differentiable}.$

 $FQE \Longrightarrow Optimization in the parameter space \Theta$.

Denote $\widehat{Q}_h = f(\widehat{\theta}_h, \phi(s, a))$ and let $\rho(f) = \rho(\theta)$, then (1) can be written as

$$\widehat{\theta}_h = \underset{\theta \in \Theta}{\operatorname{arg\,min}} \left\{ \frac{1}{2N} \sum_{n=1}^N \left[f(\theta, \phi(s_n, a_n)) - y_n(\widehat{\theta}_{h+1}) \right]^2 + \lambda \rho(\theta) \right\}, \tag{2}$$

where $y_n(\theta') = r(s_n, a_n) + \int_{\mathcal{A}} f(\theta', \phi(s_{n+1}, a)) \pi(a \mid s_{n+1}) da$.

Asymptotic Optimality

Theorem (Asymptotic Normality)

We have

$$\sqrt{K}(\widehat{v}_{\pi} - v_{\pi}) \xrightarrow{d} \mathcal{N}(0, \sigma^2), \quad \text{when } K \to \infty, \lambda = o(K^{-1/2}),$$

Here, σ^2 has a closed form dependent on $f, \phi, \theta_h^*, \xi, \pi$ and $\overline{\pi}$. Here θ_h^* is the ground true parameter where $Q_h^{\pi}(s, a) = f(\theta_h^*, \phi(s, a))$.

- Generalize results in linear case (Hao et al. 21) and tabular case (Yin et al. 20).
- The convergence rate of $|\widehat{v}_{\pi} v_{\pi}|$ is $O\left(\frac{1}{\sqrt{K}}\right)$.

Theorem (Cramer-Rao Lower Bound)

The variance of any unbiased estimator of v_{π} is lower bounded by σ^2 .

Asymptotically Efficiency of FQE.

Finite Sample Upper Bound

Theorem (Finite Sample Upper Bound)

We denote μ and $\bar{\mu}$ as the state-action occupation measure generated by policy π and $\bar{\pi}$ respectively. With high probability, we have

(i). Variance-aware error bound:
$$|\widehat{v}_{\pi} - v_{\pi}| \leq \sqrt{\frac{2\log(6/\delta)\sigma^2}{K}} + O\left(\frac{1}{K}\right)$$
,

(ii). Reward-free error bound:

$$|\widehat{v}_{\pi} - v_{\pi}| \leq \left[\sum_{h=1}^{H} \sqrt{1 + \chi_{\mathcal{G}_{h}}^{2}(\mu, \overline{\mu})} \right] \cdot \sqrt{\frac{H}{2K} \log \left(\frac{12}{\delta}\right)} + O\left(\frac{1}{K}\right),$$

where $\mathcal{G}_h := \left\{ \left(\nabla_{\theta_h} f\left(\theta_h^*, \phi(s, a) \right) \right) \cdot \boldsymbol{x} : \boldsymbol{x} \in \mathbb{R}^d \right\}.$

 \mathcal{F} -Restricted chi-square: Measuring the distribution shift in the function class.

$$\chi_{\mathcal{F}}^{2}(p_{1}, p_{2}) := \sup_{f \in \mathcal{F}} \frac{\mathbb{E}_{p_{1}}[f(x)]^{2}}{\mathbb{E}_{p_{2}}[f(x)^{2}]} - 1.$$
 (3)

- $\bullet \ \chi_{\mathcal{G}_h}^2 \left(\mu, \bar{\mu}\right) \ll \chi^2 \left(\mu, \bar{\mu}\right) \ll \|\mu/\bar{\mu}\|_{\infty} \,.$
- In linear case, $\mathcal{G}_h = \mathcal{F}$ and the result is minimax optimal (Duan et al. 20).