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OPE(Off Policy Evaluation)

Environment: MDP(S,A,P, r, ξ,H)

Using behavior policy π to generate batch data D = {(sn, an, sn+1, rn)}n∈[N ] .

Estimate policy value vπ under target policy π.

Common Methods:


Importance Sampling: IS, WIS, MIS, etc.

Hybrid Method: Doubly Robust, etc.

Direct Method: Fitted Q-Evaluation(FQE), etc.

FQE with Function Approximation.

Initialize: Q̂πH+1(s, a) = 0, ∀(s, a) ∈ S ×A.
For h = H,H − 1, ..., 1, Solve (λ > 0 and ρ is a regularizer)

Q̂πh = arg min
f∈F

{
1

N

N∑
n=1

[
f(sn, an)− yn

]2

+ λρ(f)

}
, (1)

where yn = r(sn, an) +
∫
A Q̂

π
h+1(sn+1, a)π(a | sn+1)da.

Return v̂π =
∫
S×A Q̂1(s, a)π(a|s)ξ(s)dads.

Problem: What is F ?
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Many OPE methods leverage function approximation to avoid exponentially large
variance, that is, using a function class F to approximate Qπh(s, a).

The choice of F :

(Xie et al. 19), (Yin et al. 20): Tabular Class: S and A are finite.

(Duan et al. 20), (Hao et al. 21): Linear Class F =
{
w> · φ(s, a)

}
(Kallus et al. 20), (Chen et al. 22), (Ji et al. 22): Non-parametric class.

Our work: General Differentiable Parametric Class

F = {f(θ;φ(s, a)) : θ ∈ Θ} , where f is third-time differentiable.

FQE =⇒ Optimization in the parameter space Θ.

Denote Q̂h = f(θ̂h, φ(s, a)) and let ρ(f) = ρ(θ), then (1) can be written as

θ̂h = arg min
θ∈Θ

{
1

2N

N∑
n=1

[
f(θ, φ(sn, an))− yn(θ̂h+1)

]2
+ λρ(θ)

}
, (2)

where yn(θ′) = r(sn, an) +
∫
A f(θ′, φ(sn+1, a))π(a | sn+1)da.
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Asymptotic Optimality

Theorem (Asymptotic Normality)

We have

√
K (v̂π − vπ)

d−→ N (0, σ2), when K →∞, λ = o(K−1/2),

Here, σ2 has a closed form dependent on f, φ, , θ∗h, ξ, π and π. Here θ∗h is the ground
true parameter where Qπh(s, a) = f(θ∗h, φ(s, a)).

Generalize results in linear case (Hao et al. 21) and tabular case (Yin et al. 20).

The convergence rate of |v̂π − vπ | is O
(

1√
K

)
.

Theorem (Cramer-Rao Lower Bound)

The variance of any unbiased estimator of vπ is lower bounded by σ2.

Asymptotically Efficiency of FQE.
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Finite Sample Upper Bound

Theorem (Finite Sample Upper Bound)

We denote µ and µ̄ as the state-action occupation measure generated by policy π and
π̄ respectively. With high probability, we have

(i). Variance-aware error bound: |v̂π − vπ | ≤

√
2 log(6/δ)σ2

K
+O

(
1

K

)
,

(ii). Reward-free error bound:

|v̂π − vπ | ≤
[
H∑
h=1

√
1 + χ2

Gh
(µ, µ̄)

]
·

√
H

2K
log

(
12

δ

)
+O

(
1

K

)
,

where Gh :=
{(
∇θhf

(
θ∗h, φ(s, a)

))
· x : x ∈ Rd

}
.

F-Restricted chi-square: Measuring the distribution shift in the function class.

χ2
F (p1, p2) := sup

f∈F

Ep1 [f(x)]2

Ep2 [f(x)2]
− 1. (3)

χ2
Gh

(µ, µ̄)� χ2 (µ, µ̄)� ‖µ/µ̄‖∞ .

In linear case, Gh = F and the result is minimax optimal(Duan et al. 20).
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