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AutoSNN:
Towards Energy-Efficient Spiking Neural Networks
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Spiking Neural Networks (SNNs)

Information transmission through spikes instead of activation values
spike trains
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# of spikes = energy consumption

Energy efficiency

Sparse spiking events and event-driven computation

HW support: neuromorphic chips (ex. IBM’s TrueNorth, Intel’s Loihi)



Motivation and Overview
For SNNs, the suitability of architectures

has been rarely investigated.

We leverage neural architecture search (NAS)
to find more suitable SNN architectures.
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Q. How do we design NAS pipeline to search for energy-efficient SNNs?
=» Contribution 1. Analyze and propose desirable design choice of SNN search space
=» Contribution 2. Propose spike-aware evolutionary search algorithm



Architectural Analysis and Search Space Design
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Input image

Base architectures

(a) SNN_1 (proposed macro architecture for AutoSNN)
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(b) SNN_2 (SNN_1 with GAP)
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(c) SNN_3 (TBD blocks for down-sampling in SNN_1)
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(d) SNN_4 (Average pooling layers for doivn-sampling in SNN_1)

Spiking building blocks
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Spiking inverted
bottleneck block (SIB)



Architectural Analysis and Search Space Design

Architecture | GAP Normal Down-sample | Acc.(%) Spikes Normal Down-sample | Acc.(%) Spikes
SNN_1 | X sSCBk3  MaxPool | 8693 154K SRE_k2  MaxPool | 87.54 146K
SNN_2 | ¢ SCB.k3  MaxPool | 85.05 168K SRB_k2  MaxPool | 85.82 168K

1) A global average pooling (GAP) layer with spiking neurons is not suitable for SNNs.



Architectural Analysis and Search Space Design

Architecture | GAP Normal Down-sample | Acc.(%) Spikes Normal Down-sample | Acc.(%) Spikes
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2) Max pooling layers are best-suited for down-sampling in SNNs.

Spiking block in SNN_1 ‘ Acc. (%) Spikes Firing rates

SCB_k3 86.93
SRB_k3 87.54
SIBk3 el 81.07
SIB k3.e3 88.45

154K
146K
243K
374K

Spiking Meg =1 Agg = 0.1 A = 0.01
block Acc. Spikes Acc. Spikes Acc. Spikes
g':_? SCB_k3 6436 83K 79.09 84K 86.39 124K
: SRB_k3 7276 49K 8325 70K 86.59 109K
0.23 SIB_k3._el 56.61 89K 73.54 119K 81.05 155K
0.17 SIB k3_e3 7471 136K 84.59 186K 87.61 249K

* with spike regularization

3) Spiking inverted bottleneck blocks generate large number of spikes.



Search Space Quality

Based our findings, we defined our search space based on SNN_1

When training 100 architectures that are randomly sampled from each search space:
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One-shot NAS and Spike-aware Evolutionary Search

Using training data Using validation data
An SNN SNN-based super-network
SN | : Evaluation Spike-aware fitness \
| Uniform 1 e e - F(A) - ACC?”'acy X (j\"‘ /*'T\"avg)
sampling | o0 0
1

N: # of spikes of architecture A

Mutation . .
| w.r.t. validation data
Update
top-k

Nayg: # of averaged spikes of all

-
_ Top-k pool architectures w.r.t training data
Weight N N
i 1 - C. . .
sharing | S T o9 0 A < 0:to minimize # of spikes
=== bm e e e = — = Candidate SNN architecture

(a) Train an SNN-based super-network (b) Evolutionary search



Results

CIFAR10 test accuracy (%)

Frontier performance in the acc-spikes region

Fewer spikes (More energy-efficiency)
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Transferability to other datasets

(static datasets, neuromorphic datasets)

Data SNN Architecture | Acc (%) 1T Spikes |
CIFAR100 Fangetal 2021 256 66.83 716K
AutoSNN 64 69.16 326K
SVHN Fangetal. 2021 250 91.38 462K
AutoSNN 64 91.74 215K
Tiny-Image Fangetal 2021 256 4543 1724K
Net-200 AutoSNNT 64 46.79 680K
CIFAR10  Wuetal 2019b 128 £60.50 -
-DVS Fang et al. 2021 128 69.10  4521K
Zhengetal. 2021 o4 66.10  1550K
AutoSNNT 16 72.50  1269K
DVS128 He et al. 2020 64 193.40 -
-Gesture Kaiser et al. 2020 64 195.54 -
Fang et al. 2021 128 9549  1459K
Zhengetal. 2021 64 96.53  1667K
AutoSNNT 16 96.53 423K




Summary

Goal: How to facilitate NAS for SNN domain that overlooks architectural importance

AutoSNN

Architectural analysis on accuracy and enerqgy-efficiency

Derive the energy-efficient search space

Spike-aware evolutionary search

Super-network training: direct training method for SNNs
Searching: evolutionary search algorithm with spike-aware fitness design

Demonstrate the superiority of AutoSNN on various datasets
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