

Valentin Durante¹, George Katsirelos², Thomas Schiex¹

¹Université Fédérale de Toulouse, ANITI, INRAE

²MIA-Paris-Mathématiques et Informatique Appliquées, INRAE

ICML 2022

Graphical Models (GMs)

Idea: represent a multivariate function as the sum of many *simple* functions

- $X = \{x_1, \ldots, x_n\}$
- $x_i \in \{1, \ldots, d_i\}, \ i = 1, \ldots, n$

Maximum a posteriori (MAP) assignment problem: find an assignment of all variables that maximizes the posterior probability

Applications:

				8		7		
4	9	1		6			2	8
5			3	4		1		
		3		7	9		1	
1	7					J		
	5					9	6	
	6	2	1		7		8	
	3				8	2	5	
8					4		-	

Linear and Semidefinite Programming Approaches

- Solving MAP is decision NP-complete
- Solving to optimality is not always practical

Goal: efficient tight upper and lower bounds

Linear Programming (LP)	Semidefinite Programming (SDP)
Convergent message passing (TRW-S)	Interior point methods
Scales well 🔽	Quickly limited in size 🗙
Loose bounds on hard instances $ightarrow$	Tight bounds 🗹

Efficient Semidefinite Programming Through Factorization

• Aim: efficient optimization of GMs with arbitrary potentials and # of states

Burer-Monteiro scheme

INRA

Exactly one state constraint

Random problems

Empirical Time Complexity

INRA

Upper and Lower Bounds

Random problems

Real instance: 34 296 vars

LP gap = [0, 128 878]

SDP gap = [102 900, 122 694]

Efficient MAP solving on arbitrary pairwise GMs (# of states, potentials)

Far tighter bounds than LP / convergent message passing on dense hard instances

Scales to sizes not reachable by interior point solvers

- Link to GitHub: https://github.com/ValDurante/LR-BCD
- Link to arXiv paper: https://arxiv.org/abs/2111.12491

Thank you for your attention !

