Online Nonsubmodular Minimization with Delayed Costs: From Full Information to Bandit Feedback

ICML-2022

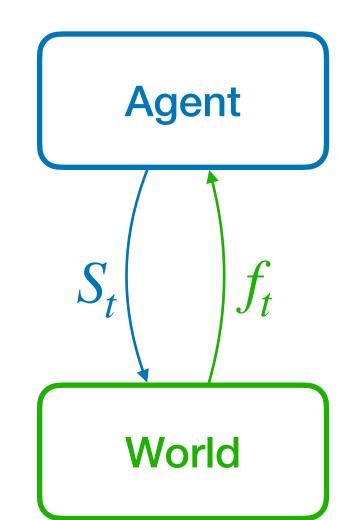
Tianyi Lin^{1,*}, Aldo Pacchiano^{2,*}, Yaodong Yu^{1,*}, Michael I. Jordan¹
(* Equal contribution)

¹UC Berkeley, ²Microsoft Research

Preliminary - Online nonsubmodular learning

for round = $1, 2, \dots$

- agent chooses a subset $S_t \subseteq [n]$
- agent suffers a cost $f_t(S_t)$ (f_t produced by the world)
- agent receives feedback (information about f_t)
- agent updates its model



 f_t : a class of nonsubmodular functions with special structure

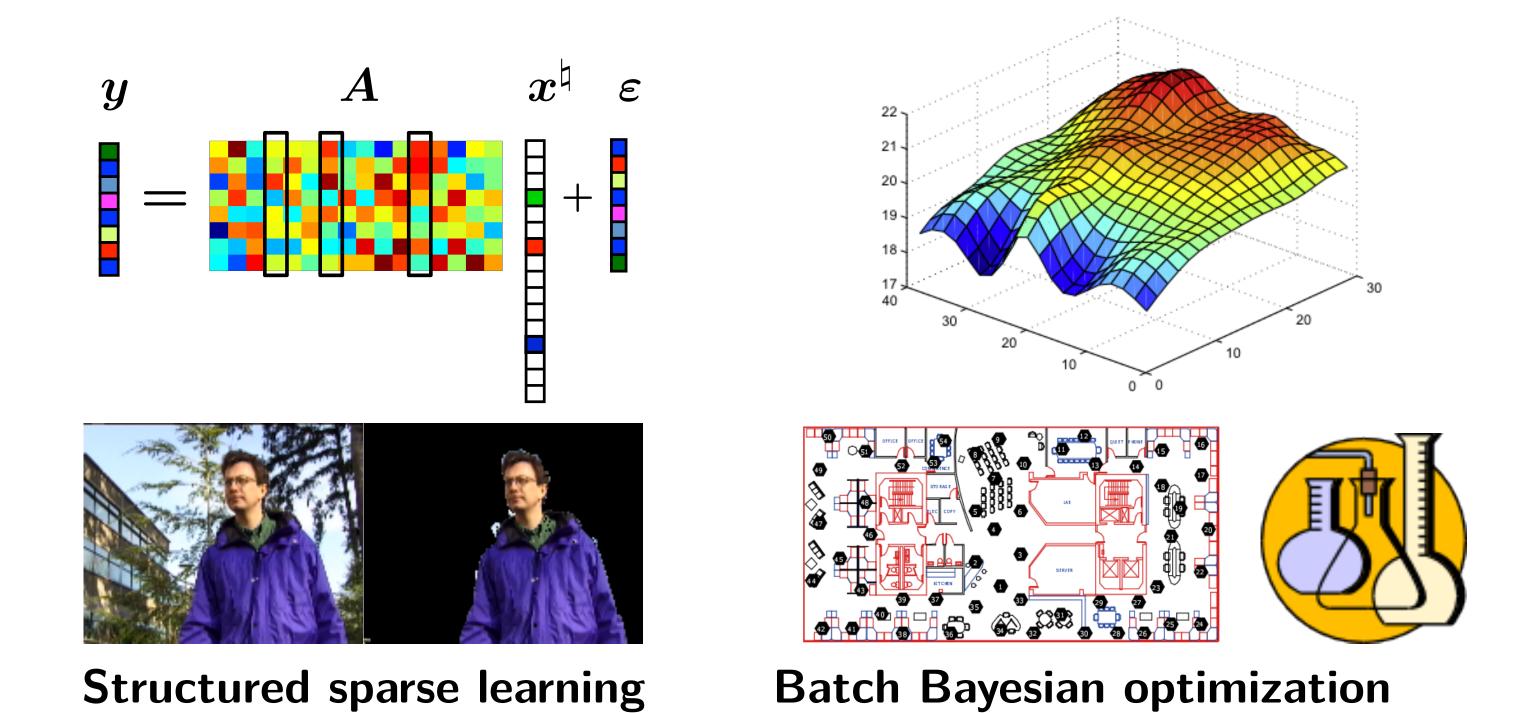
$$f_t(S) = \bar{f}_t(S) - \underline{f}_t(S), \quad \forall S \subseteq [n], t \in [T]$$

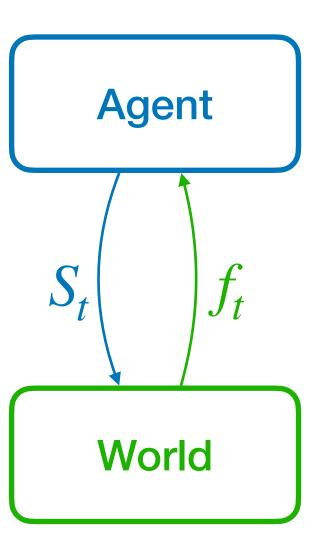
 $\bar{f}_t(\,\cdot\,): \alpha$ – weakly DR-submodular $f_t(\,\cdot\,): \beta$ – weakly DR-supermodular

Examples: Structured Sparse Learning [El Halabi & Cevher, 2015], Batch Bayesian Optimization [El Halabi & Jegelka, 2020].

Preliminary - Online nonsubmodular learning

Examples: Structured Sparse Learning [El Halabi & Cevher, 2015], Batch Bayesian Optimization [El Halabi & Jegelka, 2020].





Figures from [Mairal et al., 2010, Krause et al., 2008]

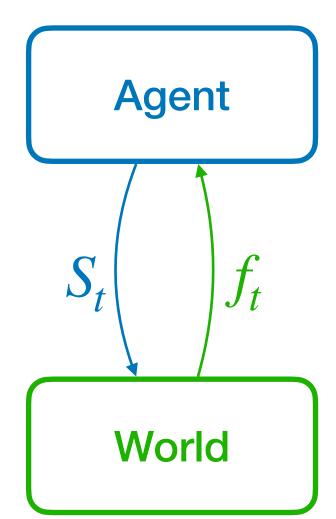
Preliminary - Regret

Regret:

$$\operatorname{Regret}(T) = \sum_{t=1}^{T} f_t(S_t) - \min_{S \subseteq [n]} \sum_{t=1}^{T} f_t(S)$$

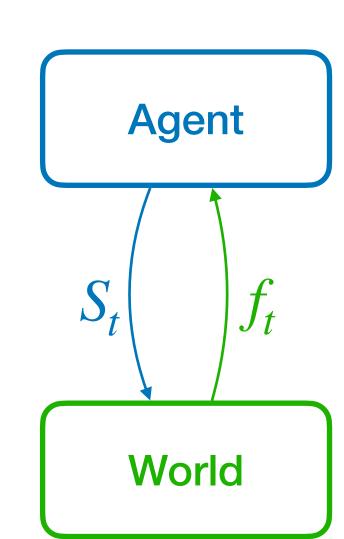
$$\mathsf{Regret}_{\alpha,\beta}(T) = \sum_{t=1}^{T} f_t(S_t) - \sum_{t=1}^{T} \left(\frac{1}{\alpha} \cdot \bar{f}_t(S_T^{\star}) - \beta \cdot \underline{f}_t(S_T^{\star})\right)$$

$$S_T^{\star} = \mathsf{argmin}_{S \subseteq [n]} \sum_{t=1}^{T} f_t(S)$$



This work

- Information about f_t :
 - Agent observes the whole function f_t (full information setting)
 - Agent only observes the value of $f_t(S_t)$ (bandit feedback setting)
- Delay between decision and feedback:
 - Agent receives information about f_t at round t (non-delay setting)
 - Agent receives information about f_t at round t+d, where d is the delay (delay setting)



Question: Can we design online learning algorithms when the cost functions are nonsubmodular with delayed costs?

Yes, In all four settings!

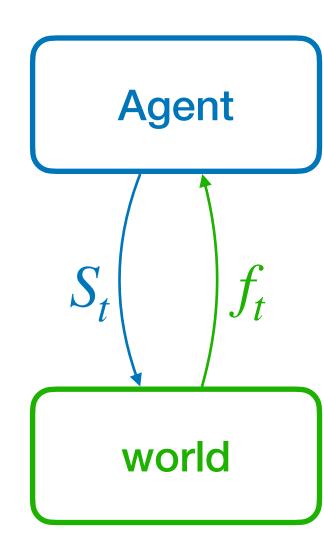
Online approximation algorithm (full information, without delay)

Algorithm 1 Online Approximate Gradient Descent

- 1: Initialization: the point $x^1 \in [0,1]^n$ and the stepsize $\eta > 0$;
- 2: **for** $t = 1, 2, \dots$ **do**
- 3: Let $x_{\pi(1)}^t \ge \dots x_{\pi(n)}^t$ be the sorted entries in the decreasing order with $A_i^t = \{\pi(1), \dots, \pi(i)\}$ for all $i \in [n]$ and $A_0^t = \emptyset$. Let $x_{\pi(0)}^t = 1$ and $x_{\pi(n+1)}^t = 0$.
- 4: Let $\lambda_i^t = x_{\pi(i)}^t x_{\pi(i+1)}^t$ for all $0 \le i \le n$.
- 5: Sample S^t from the distribution $\mathbb{P}(S^t = A_i^t) = \lambda_i^t$ for all $0 \le i \le n$ and observe the new loss function f_t .
- 6: Compute $g_{\pi(i)}^t = f_t(A_i^t) f_t(A_{i-1}^t)$ for all $i \in [n]$.
- 7: Compute $x^{t+1} = P_{[0,1]^n}(x^t \eta g^t)$.

for round = $1, 2, \dots$

- agent choose a subset $S_t \subseteq [n]$
- agent suffer a cost $f_t(S_t)$ (f_t produced by the world)
- agent receives feedback (information about f_t)
- agent updates its model



Online approximation algorithm (without delay)

- full information setting:

- Regret_{α,β} $(T) = O(\sqrt{nT} + \sqrt{T \log(1/\delta)})$ with probability 1δ .
- $\mathbb{E}[\mathsf{Regret}_{\alpha,\beta}(T)] = O(\sqrt{nT})$

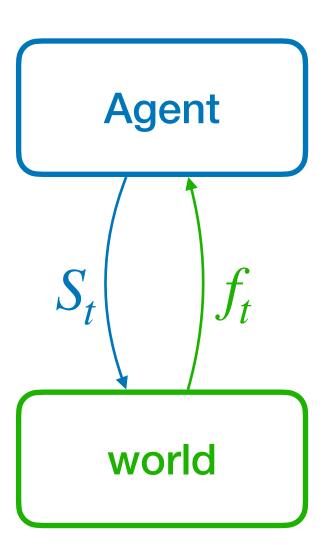
bandit feedback setting :

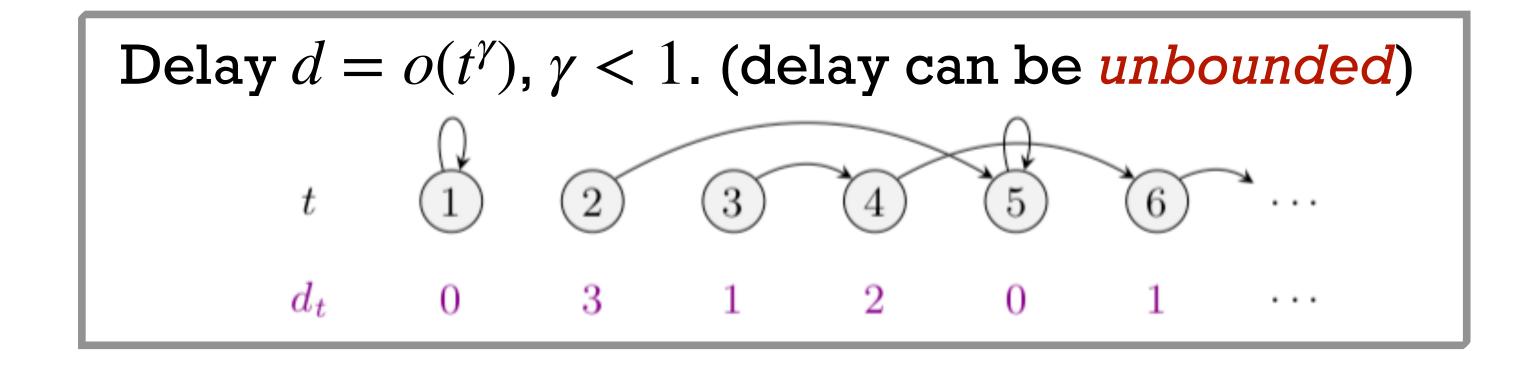
- Regret_{α,β} $(T) = O(nT^{2/3} + \sqrt{n\log(1/\delta)}T^{2/3})$ with probability 1δ .
- $\mathbb{E}[\mathsf{Regret}_{\alpha,\beta}(T)] = O(nT^{2/3})$

Delay online approximation algorithm (full information, with delay)

Algorithm 3 Delay Online Approximate Gradient Descent

- 1: **Initialization:** the point $x^1 \in [0, 1]^n$ and the stepsize $\eta_t > 0$; $\mathcal{P}_0 \leftarrow \emptyset$ and $f_{\infty} = 0$.
- 2: **for** $t = 1, 2, \dots$ **do**
- 3: Let $x_{\pi(1)}^t \ge \dots x_{\pi(n)}^t$ be the sorted entries in the decreasing order with $A_i^t = \{\pi(1), \dots, \pi(i)\}$ for all $i \in [n]$ and $A_0^t = \emptyset$. Let $x_{\pi(0)}^t = 1$ and $x_{\pi(n+1)}^t = 0$.
- 4: Let $\lambda_i^t = x_{\pi(i)}^t x_{\pi(i+1)}^t$ for all $0 \le i \le n$.
- 5: Sample S^t from the distribution $\mathbb{P}(S^t = A_i^t) = \lambda_i^t$ for $0 \le i \le n$ and observe the new loss function f_t .
- 6: Compute $g_{\pi(i)}^t = f_t(A_i^t) f_t(A_{i-1}^t)$ for all $i \in [n]$ and then trigger a delay $d_t \ge 0$.
- 7: Let $\mathcal{R}_t = \{s : s + d_s = t\}$ and $\mathcal{P}_t \leftarrow \mathcal{P}_{t-1} \cup \mathcal{R}_t$. Take $q_t = \min \mathcal{P}_t$ and set $\mathcal{P}_t \leftarrow \mathcal{P}_t \setminus \{q_t\}$.
- 8: Compute x^{t+1} using Eq. (11).





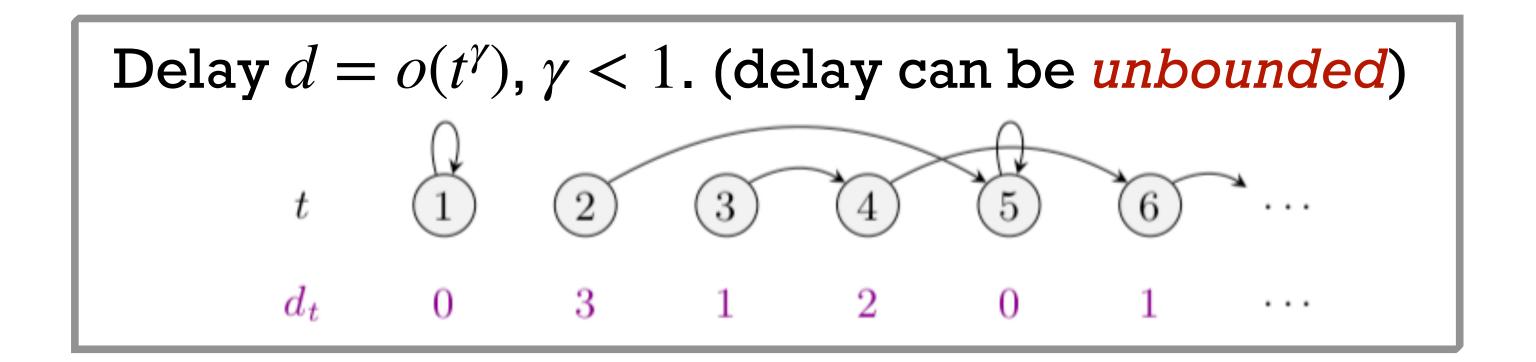
Online approximation algorithm (with delay)

- full information setting:

- Regret_{α,β} $(T) = O(\sqrt{nT^{1+\gamma}} + \sqrt{T\log(1/\delta)})$ with probability 1δ .
- $\mathbb{E}[\mathsf{Regret}_{\alpha,\beta}(T)] = O(\sqrt{nT^{1+\gamma}})$

bandit feedback setting :

- Regret_{α,β} $(T) = O(nT^{(2+\gamma)/3} + \sqrt{n\log(1/\delta)}T^{(4-\gamma)/6})$ with probability 1δ .
- $\mathbb{E}[\mathsf{Regret}_{\alpha,\beta}(T)] = O(nT^{(2+\gamma)/3})$



Thank you!

For more information, please refer to our paper (link: https://arxiv.org/abs/2205.07217) and come to our poster!