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Preliminary - Online nonsubmodular learning

for round = 1, 2, …
• agent chooses a subset 

• agent suffers a cost  (  produced by the world)

• agent receives feedback (information about  )
• agent updates its model

St ⊆ [n]
ft(St) ft

ft

 : a class of nonsubmodular functions with special structure ft
ft(S) = f̄t(S) − ft(S), ∀S ⊆ [n], t ∈ [T]

f̄t( ⋅ ) : α − weakly DR-submodular ft( ⋅ ) : β − weakly DR-supermodular

Examples: Structured Sparse Learning [El Halabi & Cevher, 2015], Batch Bayesian Optimization [El 
Halabi & Jegelka, 2020].
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Preliminary - Online nonsubmodular learning

Examples: Structured Sparse Learning [El Halabi & Cevher, 
2015], Batch Bayesian Optimization [El Halabi & Jegelka, 2020].Set function minimization in Machine learning
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Structured sparse learning Batch Bayesian optimization

Figures from [Mairal et al., 2010, Krause et al., 2008]
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Figures from [Mairal et al., 2010, Krause et al., 2008]
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Preliminary - Regret

Regret:

Regret(T) =
T

∑
t=1

ft(St) − min
S⊆[n]

T

∑
t=1

ft(S)

-Regret (this work):(α, β)

Regretα,β(T) =
T

∑
t=1

ft(St) −
T

∑
t=1

( 1
α

⋅ f̄t(S⋆
T ) − β ⋅ ft(S⋆

T ))
S⋆

T = argminS⊆[n]

T

∑
t=1

ft(S)
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This work

- Information about : 

• Agent observes the whole function  (full information setting) 

• Agent only observes the value of   (bandit feedback setting) 

- Delay between decision and feedback: 

• Agent receives information about  at round  (non-delay setting) 

• Agent receives information about  at round ,                                                              

where  is the delay  (delay setting)

ft
ft

ft(St)

ft t

ft t+d
d

Question: Can we design online learning algorithms when the 

cost functions are nonsubmodular with delayed costs? 

Yes, In all four settings!
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Online approximation algorithm (full information, without delay)
Online Nonsubmodular Minimization with Delayed Costs

Algorithm 1 Online Approximate Gradient Descent
1: Initialization: the point x1 2 [0, 1]n and the stepsize ⌘ > 0;
2: for t = 1, 2, . . . do

3: Let xt
⇡(1) � . . . xt

⇡(n) be the sorted entries in the decreasing
order with At

i = {⇡(1), . . . ,⇡(i)} for all i 2 [n] and
At

0 = ;. Let xt
⇡(0) = 1 and xt

⇡(n+1) = 0.
4: Let �t

i = xt
⇡(i) � xt

⇡(i+1) for all 0  i  n.
5: Sample St from the distribution P(St = At

i) = �t
i for all

0  i  n and observe the new loss function ft.
6: Compute gt⇡(i) = ft(A

t
i)� ft(A

t
i�1) for all i 2 [n].

7: Compute xt+1 = P[0,1]n(x
t � ⌘gt).

As mentioned before, we consider the algorithmic design in
both full information and bandit feedback settings. In the
former one, the agent is allowed to have unlimited access to
the value oracles of ft(·) after choosing S

t in each round t.
In the latter one, the agent only observes the incurred loss
at the point that she has chosen in each round t, i.e., ft(St),
and receives no other information.

4. Online Approximation Algorithm

We analyze online approximate gradient descent algorithm
and its bandit variant for regret minimization when the non-
submodular cost functions are in the form of Eq (8). Due to
space limit, we defer the proofs to Appendix B and C.

4.1. Full information setting

Let [0, 1]n be the unit hypercube and the cost function on
[0, 1]n corresponding to ft is the function (ft)C that is the
convex closure of ft. Equipped with Proposition 3.1, we
can compute approximate subgradients of (ft)C such that
the online gradient descent (Zinkevich, 2003) is applicable.

This leads to Algorithm 1 which performs one-step projected
gradient descent that yields x

t and then samples S
t from

the distribution � over {Ai}ni=0 encoded by x
t. It is worth

mentioning that �t
i = x

t
⇡(i) � x

t
⇡(i+1) for all 0  i  n and

� is thus completely independent of ft. This guarantees that
Algorithm 1 is valid in online manner since ft is realized
after the decision maker chooses St. One of the advantages
of Algorithm 1 is that it does not require the value of ↵ and
� which can be hard to compute in practice. We summarize
our results for Algorithm 1 in the following theorem.

Theorem 4.1 Suppose the adversary chooses nonsubmod-
ular functions in Eq. (8) satisfying f̄t([n]) + ft([n])  L.
Fixing T � 1 and letting ⌘ =

p
n

L
p
T

in Algorithm 1, we

have E[R↵,�(T )] = O(
p
nT ) and R↵,�(T ) = O(

p
nT +p

T log(1/�)) with probability 1� �.

Remark 4.2 Theorem 4.1 demonstrates that Algorithm 1 is
regret-optimal for our setting; indeed, our setting includes

Algorithm 2 Bandit Approximate Gradient Descent
1: Initialization: the point x1 2 [0, 1]n and the stepsize ⌘ > 0;

the exploration probability µ 2 (0, 1).
2: for t = 1, 2, . . . , T do

3: Let xt
⇡(1) � . . . xt

⇡(n) be the sorted entries in decreasing
order with At

i = {⇡(1), . . . ,⇡(i)} for all i 2 [n] and
At

0 = ;. Let xt
⇡(0) = 1 and xt

⇡(n+1) = 0.
4: Let �t

i = xt
⇡(i) � xt

⇡(i+1) for all 0  i  n.
5: Sample St from the distribution P(St = At

i) = (1�µ)�t
i+

µ
n+1 for all 0  i  n and observe the loss ft(St).

6: Compute f̂ t
i =

1(St=At
i)

(1�µ)�t
i+µ/(n+1)

ft(S
t) for all 0  i  n.

7: Compute ĝt⇡(i) = f̂ t
i � f̂ t

i�1 for all i 2 [n].
8: Compute xt+1 xt+1 = P[0,1]n(x

t � ⌘gt).

online unconstrained submodular minimization as a special
case where (↵,�)-regret becomes standard regret in Eq. (9)
and Hazan & Kale (2012) shows that Algorithm 1 is op-
timal up to constants. Our theoretical result also extends
the results in Hazan & Kale (2012) from submodular cost
functions to nonsubmodular cost functions in Eq. (8) using
the (↵,�)-regret instead of the standard regret in Eq. (9).

4.2. Bandit feedback setting

In contrast with the full-information setting, the agent only
observes the loss function ft at her action S

t, i.e., ft(St),
in bandit feedback setting. This is a more challenging setup
since the agent does not have full access to the new loss
function ft at each round t yet.

Despite the bandit feedback, we can compute an unbiased es-
timator of the gradient gt in Algorithm 1 using the technique
of importance weighting and try to implement a stochastic
version of Algorithm 1. More specifically, we notice that
f̂
t
i = 1(St=At

i)
�t
i

ft(St) is unbiased for estimating ft(At
i) for

all 0  i  n. Thus, ĝt⇡(i) = f̂
t
i � f̂

t
i�1 for all i 2 [n] gives

us an unbiased estimator of the gradient gt. However, the
variance of the estimator ĝ could be undesirably large since
the values of �t

i may be arbitrarily small.

To resolve this issue, we can sample S
t from a mixture

distribution that combines (with probability 1� µ) samples
from �

t and (with probability µ) samples from the uniform
distribution over {At

i}ni=0. This guarantees that the variance
of f̂ t

i is upper bounded by O(n2
/µ). The similar idea has

been employed in Hazan & Kale (2012) for online submod-
ular minimization. Then, we conduct the careful analysis
for the estimators ĝt such that the scale of the variance is
taken into account. Note that our analysis is different from
the standard analysis in Flaxman et al. (2005) which seems
oversimplified for our setting and results in worse regret of
O(T 3/4) compared to our result in the following theorem.

for round = 1, 2, …

•  agent choose a subset 

•  agent suffer a cost  (  produced by the world)

•  agent receives feedback (information about  )

•  agent updates its model

St ⊆ [n]
ft(St) ft

ft
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Online approximation algorithm (without delay)

- full information setting : 

•                                                                          with probability . 

•  

- bandit feedback setting : 

•                                                                              with probability . 

•  

1 − δ

1 − δ

Regretα,β(T) = O( nT + T log(1/δ))
𝔼[Regretα,β(T)] = O( nT)

Regretα,β(T) = O(nT2/3 + n log(1/δ)T2/3)
𝔼[Regretα,β(T)] = O(nT2/3)



Delay online approximation algorithm (full information, with delay)
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Online Nonsubmodular Minimization with Delayed Costs

Theorem 4.3 Suppose the adversary chooses nonsubmodu-
lar functions ft in Eq. (8) satisfying f̄t([n]) + ft([n])  L.
Fixing T � 1 and letting (⌘, µ) = ( 1

LT 2/3 ,
n

T 1/3 ) in Algo-
rithm 2, we have E[R↵,�(T )] = O(nT

2
3 ) and R↵,�(T ) =

O(nT
2
3 +

p
n log(1/�)T

2
3 ) with probability 1� �.

Remark 4.4 Theorem 4.3 demonstrates that Algorithm 2 is
no-regret for our setting even when only the bandit feedback
is available, further extending the results in Hazan & Kale
(2012) from submodular cost functions to nonsubmodular
cost functions in Eq. (8) using the (↵,�)-regret instead of
the standard regret in Eq. (9).

5. Online Delayed Approximation Algorithm

We investigate Algorithm 1 and 2 for regret minimization
even when the delay between choosing an action and receiv-
ing the incurred cost exists and can be unbounded.

5.1. The general framework

The general online learning framework with large delay that
we consider can be represented as follows. In each round
t = 1, . . . , T , the agent chooses the decision S

t ✓ [n] and
this generates a loss ft(St). Simultaneously, St triggers a
delay dt � 0 which determines the round t + dt at which
the information about ft will be received. Finally, the agent
receives the information about ft from all previous rounds
Rt = {s : s+ ds = t}.

The above model has been stated in an abstract way as the
basis for the regret analysis. The information about ft is
determined by whether the setting is full information or
bandit feedback. Our blanket assumptions for the stream of
the delays encountered will be:

Assumption 5.1 The delays dt = o(t�) for some � < 1.

Assumption 5.1 is not theoretically artificial but uncovers
that long delays are observed in practice (Chapelle, 2014);
indeed, the data statistics from real-time bidding company
suggested that more than 10% of the conversions were � 2
weeks old. More specifically, Chapelle (2014) showed that
the delays in online advertising have long-tail distributions
when conditioning on context and feature variables available
to the advertiser, thus justifying the existence of unbounded
delays. Note that Assumption 5.1 is mild and the delays can
even be adversarial as in Quanrud & Khashabi (2015).

5.2. Full information setting

At the round t, the agent receives the loss function fs(·) for
Rt = {s : s+ ds = t} after committing her decision, i,e.,
gets to observe fs(At

i) for all s 2 Rt and all 0  i  n. To
let Algorithm 1 handle these delays, the first thing to note
is that the set Rt received at a given round might be empty,

Algorithm 3 Delay Online Approximate Gradient Descent
1: Initialization: the point x1 2 [0, 1]n and the stepsize ⌘t > 0;

P0  ; and f1 = 0.
2: for t = 1, 2, . . . do

3: Let xt
⇡(1) � . . . xt

⇡(n) be the sorted entries in the decreasing
order with At

i = {⇡(1), . . . ,⇡(i)} for all i 2 [n] and
At

0 = ;. Let xt
⇡(0) = 1 and xt

⇡(n+1) = 0.
4: Let �t

i = xt
⇡(i) � xt

⇡(i+1) for all 0  i  n.
5: Sample St from the distribution P(St = At

i) = �t
i for

0  i  n and observe the new loss function ft.
6: Compute gt⇡(i) = ft(A

t
i) � ft(A

t
i�1) for all i 2 [n] and

then trigger a delay dt � 0.
7: Let Rt = {s : s + ds = t} and Pt  Pt�1 [Rt. Take

qt = minPt and set Pt  Pt \ {qt}.
8: Compute xt+1 using Eq. (11).

i.e., we could have Rt = ; for some t � 1. Following up
the pooling strategy in Héliou et al. (2020), we assume that,
as information is received over time, the agent adds it to an
information pool Pt and then uses the oldest information
available in the pool (where “oldest” stands for the time at
which the information was generated).

Since no information is available at t = 0, we have P0 = ;
and update the agent’s information pool recursively: Pt =
Pt�1 [Rt \ {qt} where qt = min(Pt�1 [Rt) denotes the
oldest round from which the agent has unused information at
round t. As Héliou et al. (2020) pointed out, this scheme can
be seen as a priority queue where {fs(·), s 2 Rt} arrives
at time t and is assigned in order; subsequently, the oldest
information is utilized at first. An important issue that arises
in the above computation is that, it may well happen that
the agent’s information pool Pt is empty at time t (e.g., if
we have d1 > 0 at time t = 1). Following the convention
that inf ; = +1, we set qt = +1 and g

1 = 0 (since it
is impossible to have information at time t = +1). Under
this convection, the computation of a new iterate x

t+1 at
time t can be written more explicitly form as follows,

x
t+1 =

⇢
x
t if Pt = ;,

P[0,1]n(x
t � ⌘tg

qt), otherwise. (11)

We present a delayed variant of Algorithm 1 in Algorithm 3.
There is no information aggregation here but the updates of
x
t+1 follows the pooling policy induced by a priority queue.

We summarize our results in the following theorem.

Theorem 5.2 Suppose the adversary chooses nonsubmod-
ular functions in Eq. (8) satisfying f̄t([n]) + ft([n])  L

and let the delays satisfy Assumption 5.1. Fixing T � 1 and
letting ⌘t =

p
n

L
p
t1+�

in Algorithm 3, we have E[R↵,�(T )] =

O(
p
nT 1+�) and R↵,�(T ) = O(

p
nT 1+�+

p
T log(1/�))

with probability 1� �.

Remark 5.3 Theorem 5.2 demonstrates that Algorithm 3
is no-regret if Assumption 5.1 hold. To our knowledge, this

Delay , . (delay can be unbounded)d = o(tγ) γ < 1



Online approximation algorithm (with delay)

- full information setting : 

•                                                                              with probability . 

•  

- bandit feedback setting : 

•                                                                                          with probability . 

•  

1 − δ

1 − δ

Regretα,β(T) = O( nT1+γ + T log(1/δ))
𝔼[Regretα,β(T)] = O( nT1+γ)

Regretα,β(T) = O(nT(2+γ)/3 + n log(1/δ)T(4−γ)/6)
𝔼[Regretα,β(T)] = O(nT(2+γ)/3)

Delay , . (delay can be unbounded)d = o(tγ) γ < 1



Thank you! 

For more information, please refer to our paper (link: https://
arxiv.org/abs/2205.07217) and come to our poster!


