Intriguing Properties of Input-Dependent Randomized Smoothing (IPIDRS)

Peter Súkeník ¹², Aleksei Kuvshinov ², Stephan Günnemann ²

¹Institute of Science and Technology Austria (ISTA) ²Technical University of Munich (TUM)

July 13, 2022

 Problems of standard Randomized Smoothing (RS):

- Problems of standard
 Randomized Smoothing (RS):
- > Certified accuracy "waterfalls".

Figure: Source: [Cohen et al., 2019], modified.

- Problems of standard Randomized Smoothing (RS):
- > Certified accuracy "waterfalls".
- Robustness vs. accuracy tradeoff [Gao et al., 2020]

Figure: Source: [Cohen et al., 2019], modified.

- Problems of standard Randomized Smoothing (RS):
- > Certified accuracy "waterfalls".
- Robustness vs. accuracy tradeoff [Gao et al., 2020]
- Shrinking phenomenon (and subsequent class-wise unfairness) [Mohapatra et al., 2020]

- Problems of standard Randomized Smoothing (RS):
- Certified accuracy "waterfalls".
- Robustness vs. accuracy tradeoff [Gao et al., 2020]
- Shrinking phenomenon (and subsequent class-wise unfairness) [Mohapatra et al., 2020]
- Use input-dependent $\sigma(x)$ instead of $\sigma!$

Peter Súkeník IPIDRS July 13, 2022 3 / 15

Theorem 2.4

Let x_0 be certified point, x_1 potential adversary, p_B probability of runner-up class at point x_0 , σ_i^2 the smoothing variance at x_i and N the dimension. The following two implications hold:

• If $\sigma_0 > \sigma_1$ and

$$\log\left(\frac{\sigma_1^2}{\sigma_0^2}\right) + 1 - \frac{\sigma_1^2}{\sigma_0^2} < \frac{2\log(p_B)}{N},$$

then x_1 cannot be certified w.r.t. x_0 .

• If $\sigma_0 < \sigma_1$ and

$$\log\left(\frac{\sigma_1^2}{\sigma_0^2} \frac{N-1}{N}\right) + 1 - \frac{\sigma_1^2}{\sigma_0^2} \frac{N-1}{N} < \frac{2\log(p_B)}{N},$$

then x_1 cannot be certified w.r.t. x_0 .

Peter Súkeník IPIDRS July 13, 2022 3 / 15

Table: Theoretical lower-thresholds for σ_1/σ_0 for different data dimensions and runner-up class probabilities p_B .

p_A	0.1	0.01	0.001	0.00007	N
MNIST	0.946	0.924	0.908	0.892	784
CIFAR10	0.973	0.961	0.953	0.945	3072
ImageNet	0.997	0.995	0.994	0.993	196608

Table: Theoretical lower-thresholds for σ_1/σ_0 for different data dimensions and runner-up class probabilities p_B .

p_A	0.1	0.01	0.001	0.00007	N
MNIST	0.946	0.924	0.908	0.892	784
CIFAR10	0.973	0.961	0.953	0.945	3072
ImageNet	0.997	0.995	0.994	0.993	196608

 $\label{eq:Figure:Problems} \mbox{Figure: Problems with the curse of dimensionality.}$

Figure: Problems with the curse of dimensionality.

Figure: Problems with the curse of dimensionality.

IDRS can still work!

• If we are careful, IDRS can still be useful!

IDRS can still work!

- If we are careful, IDRS can still be useful!
- We just need that $\sigma(x)$ is r-semi-elastic.

IDRS can still work!

- If we are careful, IDRS can still be useful!
- We just need that $\sigma(x)$ is r-semi-elastic.

Certified radius

Let $\sigma(x)$ be an r-semi-elastic function and x_0 , p_B , N, σ_0 as usual. Then, the certified radius at x_0 guaranteed by our method is

$$CR(x_0) = \sup \{ R \ge 0 : \xi(R) < 0.5 \}$$

Peter Súkeník IPIDRS July 13, 2022 9 / 15

Figure: Numerical evaluation of the certified radii. The function $\xi_{>}$ and the threshold for different values of N.

IPIDRS - Contributions

- Generalize framework of [Cohen et al., 2019].
- Point out the curse of dimensionality for IDRS.
- Build abstract framework which enables justified use of IDRS.
- Demonstrate correctly used IDRS for newly proposed $\sigma(x)$ and compare it to RS.
- Provide additional insights in many aspects of RS and IDRS.

References I

- Cohen, J., Rosenfeld, E., and Kolter, Z. (2019).

 Certified adversarial robustness via randomized smoothing.

 In International Conference on Machine Learning, pages 1310–1320.

 PMI R.
- Gao, Y., Rosenberg, H., Fawaz, K., Jha, S., and Hsu, J. (2020). Analyzing accuracy loss in randomized smoothing defenses. arXiv preprint arXiv:2003.01595.
- Mohapatra, J., Ko, C.-Y., Liu, S., Chen, P.-Y., Daniel, L., et al. (2020).
 - Rethinking randomized smoothing for adversarial robustness. arXiv preprint arXiv:2003.01249.

Peter Súkeník IPIDRS July 13, 2022 13 / 15

APPENDIX: The $\sigma(x)$ design

Let σ_b be a base standard deviation, r the required semi-elasticity, $\{x_i\}_{i=1}^d$ the training set, $\mathcal{N}_k(x)$ the k nearest neighbors of x and m the normalization constant. Then:

$$\sigma(x) = \sigma_b \exp \left(r \left(\frac{1}{k} \sum_{x_i \in \mathcal{N}_k(x)} ||x - x_i|| - m \right) \right).$$

Peter Súkeník IPIDRS July 13, 2022 14 / 15

APPENDIX: Randomized Smoothing (RS)

- Classifier f susceptible against adversarial attacks ⇒ robust smoothed classifier q
- $g(x) = \mathop{\arg\max}_{C \in \mathsf{CLASSES}} \mathbb{P}(f(\tilde{x}) = C),$ $\tilde{x} \sim \mathcal{N}(x, \sigma^2 I).$
- σ does *not* depend on x.
- g has provably large certified l₂ robustness.

Figure: [Cohen et al., 2019]

