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Input-Dependent Randomized Smoothing - Motivation

• Problems of standard
Randomized Smoothing (RS):

ã Certified accuracy “waterfalls”.
ã Robustness vs. accuracy

tradeoff [Gao et al., 2020]
ã Shrinking phenomenon (and

subsequent class-wise
unfairness)
[Mohapatra et al., 2020]

• Use input-dependent σ(x)
instead of σ!
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Curse of dimensionality

Theorem 2.4
Let x0 be certified point, x1 potential adversary, pB probability of
runner-up class at point x0, σ2

i the smoothing variance at xi and N the
dimension. The following two implications hold:

• If σ0 > σ1 and
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Curse of dimensionality

Table: Theoretical lower-thresholds for σ1/σ0 for different data dimensions and
runner-up class probabilities pB.

pA 0.1 0.01 0.001 0.00007 N
MNIST 0.946 0.924 0.908 0.892 784

CIFAR10 0.973 0.961 0.953 0.945 3072
ImageNet 0.997 0.995 0.994 0.993 196608
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Curse of dimensionality

Figure: Problems with the curse of dimensionality.
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IDRS can still work!

• If we are careful, IDRS can still be useful!

• We just need that σ(x) is r-semi-elastic.

Certified radius
Let σ(x) be an r-semi-elastic function and x0, pB, N , σ0 as usual. Then,
the certified radius at x0 guaranteed by our method is

CR(x0) = sup {R ≥ 0 : ξ(R) < 0.5}
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IDRS can still work!

Figure: Numerical evaluation of the certified radii. The function ξ> and the threshold
for different values of N .
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Experiments
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IPIDRS - Contributions

• Generalize framework of [Cohen et al., 2019].
• Point out the curse of dimensionality for IDRS.
• Build abstract framework which enables justified use of IDRS.
• Demonstrate correctly used IDRS for newly proposed σ(x) and

compare it to RS.
• Provide additional insights in many aspects of RS and IDRS.
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APPENDIX: The σ(x) design

Let σb be a base standard deviation, r the required semi-elasticity, {xi}d
i=1

the training set, Nk(x) the k nearest neighbors of x and m the
normalization constant. Then:

σ(x) = σb exp

r

1

k
∑

xi∈Nk(x)

‖x − xi‖ − m

 .
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APPENDIX: Randomized Smoothing (RS)

• Classifier f susceptible against
adversarial attacks =⇒ robust
smoothed classifier g

• g(x) = arg max
C∈CLASSES

P(f (x̃) = C),

x̃ ∼ N (x, σ2I ).
• σ does not depend on x.
• g has provably large certified l2

robustness.
Figure: [Cohen et al., 2019]
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