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Optimal Auction Design

• One of the central topics in auction design

• Goal: design a revenue-optimal auction that satisfies:
• Dominant Strategy Incentive Compatible (DSIC) :

Truthful bidding is the dominant strategy.
• Individually Rational (IR):

Truthful bidding will receive non-negative utility.

• However, optimal auction design is hard.
• No analytical solution for even 2-item auctions.



Optimal Auction Design through Deep Learning

• Pioneered by RegretNet1

• Parameterize the auction mechanism with neural networks.
• Formulate auction design as a constrained optimization problem.

• Objective: Maximize expected revenue
• Constraint: DSIC
• IR can be satisfied by mechanism construction.

• Find near-optimal solutions using gradient descent.
• Loss = - Revenue + DSIC Violation Penalty

1Dütting, Paul, et al. Optimal auctions through deep learning. ICML 2019



Our Main Contributions

• We extend the deep learning approach for auction design to  
contextual auction.

• We propose CITransNet: a Context-Integrated Transformer-
based neural Network architecture, as the parameterized 
mechanism.

• Experiments show the effectiveness of CITransNet in both 
single-item and multi-item contextual auctions.



Traditional Bayesian Auction

Bidder 𝑖

Item 𝑗

𝑣!" ∼ 𝐷#!"

Bidder/item only identified by ID



Contextual Auction

Bidder 𝑖 with
context 𝐱𝒊

Item 𝑗 with context y𝒋

𝑣!" ∼ 𝐷&#$|(!,*"

Bidder/item represented by 
contexts (public features)

Ø More representative

Ø More practical



CITransNet

Input Layer + Multiple Interaction Layers + Output Layer



Properties of CITransNet

• Context-integrated: it makes use of bids and all the contexts

• Individually Rational (IR)

• Permutation equivariant:
permutation on inputs cause the same permutation on outputs

• The architecture is not affected by input size.



Experiment Results

• Recover Myerson results in single-item auctions.



Experiment Results

• Outperform strong baselines in multi-item auctions



Experiment Results

• Generalize well to settings with a different number of bidders or 
items than those in training.



Thanks for your listening!


