

SPECTRAL REPRESENTATION OF ROBUSTNESS MEASURES

FOR OPTIMIZATION UNDER INPUT UNCERTAINTY

Jixiang Qing, Tom Dhaene, Ivo Couckuyt

PROBLEM FORMULATION

- Robust optimization
 - Optimize black box function *f*
 - Consider Input Uncertainty
- What is a robust solution?
 - First moment: $\mathbb{J}_{\xi}(f) = \mathbb{E}_{\xi}[f(x+\xi)]$
 - Second moment: $\mathbb{V}_{\xi}(f) = \mathbb{V}_{\xi}[f(x+\xi)]$

"Solution χ_r^* is more robust than χ^* "

Mean: $\mathbb{E}_{\xi}[f(x_r^* + \xi)] \ge \mathbb{E}_{\xi}[f(x^* + \xi)]$

Variance: $\mathbb{V}_{\xi}[f(x_r^* + \xi)] \leq \mathbb{V}_{\xi}[f(x^* + \xi)]$

PROBLEM FORMULATION

- Robust optimization
 - Optimize black box function *f*
 - Consider Input Uncertainty
- What is a robust solution?
 - First moment: $\mathbb{J}_{\xi}(f) = \mathbb{E}_{\xi}[f(x+\xi)]$
 - Second moment: $\mathbb{V}_{\xi}(f) = \mathbb{V}_{\xi}[f(x+\xi)]$
- Bayesian approach:
 - Gaussian Process $f \sim GP$
 - Bayesian Treatment of the above moments
 - $\mathbb{J}_{\xi}[\mathcal{GP}(f)] = \mathbb{E}_{\xi}[\mathcal{GP}(x+\xi)]$
 - $\mathbb{V}_{\xi}[\mathcal{GP}(f)] = \mathbb{V}_{\xi}[\mathcal{GP}(x+\xi)]$

$$k(x, x')$$
 Bochner's Theorem
$$= \sigma^2 \int p(\omega) \cos(\omega^T L(x - x')) d\omega \approx$$

k(x, x') Bochner's Theorem

Inner Product Form

Bayesian Linear Model

$$= \sigma^2 \int p(\omega) \cos(\omega^T L(x - x')) d\omega \approx$$

$$\phi^T(x)\phi(x')$$

 $\mathcal{GP} \simeq \phi(x)^T \Theta$ Feature mapping function

Random Fourier Features

Monte Carlo

k(x, x') Bochner's Theorem

Inner Product Form

Bayesian Linear Model

$$= \sigma^2 \int p(\omega) \cos(\omega^T L(x - x')) d\omega \approx$$

$$\phi^T(x)\phi(x')$$

 $\mathcal{GP} \simeq \phi(x)^T \Theta$ Feature mapping function

Quadrature Fourier Features

Numerical Quadrature

$$k(x, x')$$
 Bochner's Theorem
$$= \sigma^2 \int p(\omega) \cos(\omega^T L(x - x')) d\omega \approx$$

Bayesian Linear Model

$$\mathcal{GP} \simeq \phi(x)^T \Theta$$
Feature mapping function

- $\mathbb{J}_{\xi}[\mathcal{GP}(f)] \simeq \mathbb{E}_{\xi}[\phi(x+\xi)^T]\Theta^T$
- $\mathbb{V}_{\varepsilon}[\mathcal{GP}(f)]$ $\simeq \Theta^T \mathbb{E}_{\varepsilon}[\phi(x+\xi)^T]\Theta - [\mathbb{E}_{\varepsilon}[\phi(x+\xi)^T]\Theta]^2$

$$k(x, x')$$
 Bochner's Theorem
$$= \sigma^2 \int p(\omega) \cos(\omega^T L(x - x')) d\omega \approx$$

We derive expressions for

- ~ (multivariate) Normal distribution
- ~ Uniform distribution

Bayesian Linear Model

$$\mathcal{GP} \simeq \phi(x)^T \Theta$$
Feature mapping function

- $\mathbb{J}_{\varepsilon}[\mathcal{GP}(f)] \simeq \mathbb{E}_{\varepsilon}[\phi(x+\xi)^T]\Theta$
- $\mathbb{V}_{\varepsilon}[\mathcal{GP}(f)]$ $\simeq \Theta^T \mathbb{E}_{\varepsilon}[\phi(x+\xi)^T]\Theta \left[\mathbb{E}_{\varepsilon}[\phi(x+\xi)^T]\Theta\right]^2$

$$k(x, x')$$
 Bochner's Theorem
$$= \sigma^2 \int p(\omega) \cos(\omega^T L(x - x')) d\omega \approx$$

We derive expressions for

- (multivariate) Normal distribution
- Uniform distribution

Fourier feature base robustness measures

A spectral representation (i.e., a parametric representation) of robustness measures that supports **sampling** continuous posterior trajectories

MAIN CONTRIBUTION

Fourier feature-based robustness measures

A spectral representation (i.e., a parametric representation) of robustness measures that supports sampling continuous posterior trajectories

Application in Robust Bayesian Optimization

- Supports variousproblem formulations
- Supports variousacquisition functions

MAIN CONTRIBUTION

Function Value

Objective

Fourier feature-based robustness measures

A spectral representation (i.e., a parametric representation) of robustness measures that supports sampling continuous posterior trajectories

Application in Robust Bayesian Optimization

- Supports variousproblem formulations
- Supports variousacquisition functions

Proof of Concept

Pareto frontier

1.0

Benchmark Function

Jixiang Qing

Ph.D. Candidate at Ghent University

IDLAB-IMEC

E Jixiang.Qing@ugent.be

M +32 486514628

W https://github.com/TsingQAQ

www.ugent.be

- f Universiteit Gent
- @ugent
- @ @ugent
- in Ghent University
 Code is available at:

https://github.com/TsingQAQ/gp_mean_var_rbo

