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Common Methods for Cooperative Multi-agent RL

Fully decentralized control policies
> An agent’s behavior only depends on its local observation history.

» Lack of explicit coordination.
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Common Methods for Cooperative Multi-agent RL

Fully decentralized control policies
> An agent’s behavior only depends on its local observation history.

» Lack of explicit coordination.

Coordination graphs
» Explicitly represent coordination relations by higher-order value factorization.

> Agents communicate to jointly optimize their actions.
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Deep Coordination Graphs

DCG defines the joint value factorization upon a coordination graph G:

Qr, a6 => alr 19, ag) + > ail 0, J() i, ) (1)
’LE[?’L] (Z,J)GG

()

where 7, is the observation-action history of agent i.
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Deep Coordination Graphs

DCG defines the joint value factorization upon a coordination graph G:

Q(T(t), a; G) = Z Qz( (t)7 z) + Z Qz’j( 1()7 ]() s, a’]) (1)

i€[n] (i,)eG

()

where 7, is the observation-action history of agent i.

Computing joint actions with maximum value can be modeled as a distributed
constraint optimization problem (DCOP).
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Coordiantion Graphs

» The default implementation of DCG uses
complete graphs. However, the DCOPs
induced by such graphs and their
approximations are NP-hard problems.
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Coordiantion Graphs

» The default implementation of DCG uses
complete graphs. However, the DCOPs
induced by such graphs and their
approximations are NP-hard problems.

» DCG selects actions by a heuristic
algorithm called max-sum.
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Figure 1: A motivating example
with the accuracy and the relative
joint Q error of max-sum algorithm
w.r.t. the number of agents.
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Polynomial-time Coordination Graphs Class

Definition (Polynomial-Time Coordination Graph Class)

Let n be the number of agents and A = ||J_; A°]. We say a graph class G is a
Polynomial-Time Coordination Graph Class if there exists an algorithm that can
solve any induced DCOP of any coordination graph G € G in Poly(n, A) running
time.

» The set of undirected acyclic graphs Guac is a polynomial-time coordination
graph class.
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» However, the coordination relationship among agents may not be
characterized by a static sparse coordination graph.
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Polynomial-time Coordination Graphs Class

Definition (Polynomial-Time Coordination Graph Class)

Let n be the number of agents and A = ||J_; A°]. We say a graph class G is a
Polynomial-Time Coordination Graph Class if there exists an algorithm that can
solve any induced DCOP of any coordination graph G € G in Poly(n, A) running
time.

» The set of undirected acyclic graphs Guac is a polynomial-time coordination
graph class.

» However, the coordination relationship among agents may not be
characterized by a static sparse coordination graph.

Use a state-dependent coordination graph!

» Given different environmental states, the joint values can be factorized with
different coordination graphs chosen from a predefined graph class G C Gyac-
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Learning Self-Organized Topology with An Imaginary Coordinator

¢ ) (
Q0. a6 =" alrl? a)+ Y ay(r” 7 as, 0y) (1)
i€[n] (i9)€G
Consider an imaginary coordinator agent whose action space refers to the selection
of graph topologies. The value factorization structure naturally serves a utility
function for the coordinator agent to select graphs:

G « argmax (max Q" a; G)) . (2)
Geg @
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Learning Self-Organized Topology with An Imaginary Coordinator

¢ ) (
Q0. a6 =" alrl? a)+ Y ay(r” 7 as, 0y) (1)
i€[n] (ij)eq
Consider an imaginary coordinator agent whose action space refers to the selection
of graph topologies. The value factorization structure naturally serves a utility
function for the coordinator agent to select graphs:

G « argmax (max Q" a; G)) . (2)

Geg a

We design two graph classes Gp and Gp, which are subsets of G4, so that the
graph selection can be computed by combinatorial optimization techniques.
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Temporal Difference Learning

Update the network parameters 8 by minimizing the Q-learning TD loss:

Lg0)= E (yeg — Q7. @ G: 6))° (3)
(7,a,G,r,7")~D

where ye, = r+ ymax(y ¢y Q(7', a’; G';07) is the one-step TD target.
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Empirical Results
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Figure 2: Learning curves on MACO benchmark.
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