Self-Organized Polynomial-time Coordination Graphs

Qianlan Yang*, Weijun Dong*, Zhizhou Ren*, Jianhao Wang, Tonghan Wang, Chongjie Zhang

Common Methods for Cooperative Multi-agent RL

Fully decentralized control policies

- ▶ An agent's behavior only depends on its local observation history.
- ▶ Lack of explicit coordination.

Common Methods for Cooperative Multi-agent RL

Fully decentralized control policies

- ▶ An agent's behavior only depends on its local observation history.
- ▶ Lack of explicit coordination.

Coordination graphs

- Explicitly represent coordination relations by higher-order value factorization.
- ▶ Agents communicate to jointly optimize their actions.

Deep Coordination Graphs

DCG defines the joint value factorization upon a coordination graph G:

$$Q(\boldsymbol{\tau}^{(t)}, \boldsymbol{a}; G) = \sum_{i \in [n]} q_i(\tau_i^{(t)}, a_i) + \sum_{(i,j) \in G} q_{ij}(\tau_i^{(t)}, \tau_j^{(t)}, a_i, a_j)$$
(1)

where $\tau_i^{(t)}$ is the observation-action history of agent *i*.

Deep Coordination Graphs

DCG defines the joint value factorization upon a coordination graph G:

$$Q(\boldsymbol{\tau}^{(t)}, \boldsymbol{a}; G) = \sum_{i \in [n]} q_i(\tau_i^{(t)}, a_i) + \sum_{(i,j) \in G} q_{ij}(\tau_i^{(t)}, \tau_j^{(t)}, a_i, a_j)$$
(1)

where $\tau_i^{(t)}$ is the observation-action history of agent i.

Computing joint actions with maximum value can be modeled as a distributed constraint optimization problem (DCOP).

Coordination Graphs

► The default implementation of DCG uses complete graphs. However, the DCOPs induced by such graphs and their approximations are NP-hard problems.

Coordination Graphs

- ▶ The default implementation of DCG uses complete graphs. However, the DCOPs induced by such graphs and their approximations are NP-hard problems.
- ▶ DCG selects actions by a heuristic algorithm called max-sum.

Figure 1: A motivating example with the accuracy and the relative joint Q error of max-sum algorithm w.r.t. the number of agents.

Polynomial-time Coordination Graphs Class

Definition (Polynomial-Time Coordination Graph Class)

Let n be the number of agents and $A = |\bigcup_{i=1}^n A^i|$. We say a graph class \mathcal{G} is a *Polynomial-Time Coordination Graph Class* if there exists an algorithm that can solve any induced DCOP of any coordination graph $G \in \mathcal{G}$ in Poly(n, A) running time.

▶ The set of undirected acyclic graphs \mathcal{G}_{uac} is a polynomial-time coordination graph class.

Polynomial-time Coordination Graphs Class

Definition (Polynomial-Time Coordination Graph Class)

Let n be the number of agents and $A = |\bigcup_{i=1}^n A^i|$. We say a graph class \mathcal{G} is a *Polynomial-Time Coordination Graph Class* if there exists an algorithm that can solve any induced DCOP of any coordination graph $G \in \mathcal{G}$ in Poly(n, A) running time.

- ▶ The set of undirected acyclic graphs \mathcal{G}_{uac} is a polynomial-time coordination graph class.
- ▶ However, the coordination relationship among agents may not be characterized by a static sparse coordination graph.

Polynomial-time Coordination Graphs Class

Definition (Polynomial-Time Coordination Graph Class)

Let n be the number of agents and $A = |\bigcup_{i=1}^n A^i|$. We say a graph class \mathcal{G} is a *Polynomial-Time Coordination Graph Class* if there exists an algorithm that can solve any induced DCOP of any coordination graph $G \in \mathcal{G}$ in Poly(n, A) running time.

- ▶ The set of undirected acyclic graphs \mathcal{G}_{uac} is a polynomial-time coordination graph class.
- ▶ However, the coordination relationship among agents may not be characterized by a static sparse coordination graph.

Use a state-dependent coordination graph!

▶ Given different environmental states, the joint values can be factorized with different coordination graphs chosen from a predefined graph class $\mathcal{G} \subseteq \mathcal{G}_{uac}$.

Learning Self-Organized Topology with An Imaginary Coordinator

$$Q(\boldsymbol{\tau}^{(t)}, \boldsymbol{a}; G) = \sum_{i \in [n]} q_i(\tau_i^{(t)}, a_i) + \sum_{(i,j) \in G} q_{ij}(\tau_i^{(t)}, \tau_j^{(t)}, a_i, a_j)$$
(1)

Consider an imaginary coordinator agent whose action space refers to the selection of graph topologies. The value factorization structure naturally serves a utility function for the coordinator agent to select graphs:

$$G^{(t)} \leftarrow \underset{G \in \mathcal{G}}{\operatorname{arg max}} \left(\underset{\boldsymbol{a}}{\operatorname{max}} Q(\boldsymbol{\tau}^{(t)}, \boldsymbol{a}; G) \right).$$
 (2)

Learning Self-Organized Topology with An Imaginary Coordinator

$$Q(\boldsymbol{\tau}^{(t)}, \boldsymbol{a}; G) = \sum_{i \in [n]} q_i(\tau_i^{(t)}, a_i) + \sum_{(i,j) \in G} q_{ij}(\tau_i^{(t)}, \tau_j^{(t)}, a_i, a_j)$$
(1)

Consider an imaginary coordinator agent whose action space refers to the selection of graph topologies. The value factorization structure naturally serves a utility function for the coordinator agent to select graphs:

$$G^{(t)} \leftarrow \underset{G \in \mathcal{G}}{\operatorname{arg max}} \left(\underset{\boldsymbol{a}}{\operatorname{max}} Q(\boldsymbol{\tau}^{(t)}, \boldsymbol{a}; G) \right).$$
 (2)

We design two graph classes \mathcal{G}_P and \mathcal{G}_T , which are subsets of \mathcal{G}_{uac} , so that the graph selection can be computed by combinatorial optimization techniques.

Temporal Difference Learning

Update the network parameters $\boldsymbol{\theta}$ by minimizing the Q-learning TD loss:

$$\mathcal{L}_{cg}(\boldsymbol{\theta}) = \mathbb{E}_{(\boldsymbol{\tau}, \boldsymbol{a}, G, r, \boldsymbol{\tau}') \sim \mathcal{D}} \left[(y_{cg} - Q(\boldsymbol{\tau}, \boldsymbol{a}; G; \boldsymbol{\theta}))^2 \right]$$
(3)

where $y_{cq} = r + \gamma \max_{(\boldsymbol{a}', G')} Q(\boldsymbol{\tau}', \boldsymbol{a}'; G'; \boldsymbol{\theta}^-)$ is the one-step TD target.

Empirical Results

Figure 2: Learning curves on MACO benchmark.

Figure 3: Illustrative example.

Figure 3: Illustrative example.

Graph Class	Select graph $G^{(t)}$	Select actions on a given graph
\mathcal{G}_P	$\overline{\hspace{1cm}}$	
\mathcal{G}_T	_	
Complete graph	N/A	_

Figure 4: Graph Classes.

Figure 3: Illustrative example.

Graph Class	Select graph $G^{(t)}$	Select actions on a given graph
\mathcal{G}_P	$\overline{}$	
\mathcal{G}_T	_	
Complete graph	N/A	_

Figure 4: Graph Classes.

Figure 5: Evaluations on other testbeds.

Figure 3: Illustrative example.

Graph Class	Select graph $G^{(t)}$	Select actions on a given graph
\mathcal{G}_P	$\overline{}$	
\mathcal{G}_T	_	
Complete graph	N/A	_

Figure 4: Graph Classes.

Figure 5: Evaluations on other testbeds.

Figure 6: Ablation Study.

Figure 3: Illustrative example.

Graph Class	Select graph $G^{(t)}$	Select actions on a given graph
\mathcal{G}_P	$\overline{}$	
\mathcal{G}_T	_	
Complete graph	N/A	_

Figure 4: Graph Classes.

Figure 5: Evaluations on other testbeds.

Figure 6: Ablation Study.

Figure 7: Visualization of Self-Organized Coordination.

