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Common Methods for Cooperative Multi-agent RL

Fully decentralized control policies
▶ An agent’s behavior only depends on its local observation history.
▶ Lack of explicit coordination.

Coordination graphs
▶ Explicitly represent coordination relations by higher-order value factorization.
▶ Agents communicate to jointly optimize their actions.
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Deep Coordination Graphs

DCG defines the joint value factorization upon a coordination graph G:

Q(τ (t),a;G) =
∑
i∈[n]

qi(τ
(t)
i , ai) +

∑
(i,j)∈G

qij(τ
(t)
i , τ

(t)
j , ai, aj) (1)

where τ
(t)
i is the observation-action history of agent i.

Computing joint actions with maximum value can be modeled as a distributed
constraint optimization problem (DCOP).
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Coordiantion Graphs

▶ The default implementation of DCG uses
complete graphs. However, the DCOPs
induced by such graphs and their
approximations are NP-hard problems.

▶ DCG selects actions by a heuristic
algorithm called max-sum.
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Figure 1: A motivating example
with the accuracy and the relative
joint Q error of max-sum algorithm
w.r.t. the number of agents.
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Polynomial-time Coordination Graphs Class

Definition (Polynomial-Time Coordination Graph Class)
Let n be the number of agents and A = |

∪n
i=1 Ai|. We say a graph class G is a

Polynomial-Time Coordination Graph Class if there exists an algorithm that can
solve any induced DCOP of any coordination graph G ∈ G in Poly(n,A) running
time.

▶ The set of undirected acyclic graphs Guac is a polynomial-time coordination
graph class.

▶ However, the coordination relationship among agents may not be
characterized by a static sparse coordination graph.

Use a state-dependent coordination graph!
▶ Given different environmental states, the joint values can be factorized with

different coordination graphs chosen from a predefined graph class G ⊆ Guac.
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Learning Self-Organized Topology with An Imaginary Coordinator

Q(τ (t),a;G) =
∑
i∈[n]

qi(τ
(t)
i , ai) +

∑
(i,j)∈G

qij(τ
(t)
i , τ

(t)
j , ai, aj) (1)

Consider an imaginary coordinator agent whose action space refers to the selection
of graph topologies. The value factorization structure naturally serves a utility
function for the coordinator agent to select graphs:

G(t) ← argmax
G∈G

(
max

a
Q(τ (t),a;G)

)
. (2)

We design two graph classes GP and GT, which are subsets of Guac, so that the
graph selection can be computed by combinatorial optimization techniques.
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Temporal Difference Learning

Update the network parameters θ by minimizing the Q-learning TD loss:

Lcg(θ) = E
(τ ,a,G,r,τ ′)∼D

[
(ycg −Q(τ ,a;G;θ))2

]
(3)

where ycg = r + γmax(a′,G′) Q(τ ′,a′;G′;θ−) is the one-step TD target.

7



Empirical Results
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Figure 2: Learning curves on MACO benchmark.
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Figure 4: Graph Classes.
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Figure 5: Evaluations on
other testbeds.
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Figure 6: Ablation Study.
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Thanks for Listening!


