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The quest for lottery tickets

How to train sparse irregular neural nets?



The quest for lottery tickets

Lottery ticket hypothesis (LTH) (Frankle and Carbin, 2019)
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The quest for lottery tickets

Lottery ticket hypothesis (LTH) (Frankle and Carbin, 2019)

There exist small, well trainable sub-networks of
large, randomly initialized neural networks.
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The quest for lottery tickets
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Lottery ticket hypothesis (LTH) (Frankle and Carbin, 2019)
There exist small, well trainable sub-networks of
large, randomly initialized neural networks.

Strong lottery ticket hypothesis (SLTH) (Ramanujan et al. 2020)
There exist small sub-networks of large, randomly initialized neural networks
that perform well at initialization.




The quest for lottery tickets

Output Lottery ticket hypothesis (LTH) (Frankle and Carbin, 2019)
There exist small, well trainable sub-networks of
large, randomly initialized neural networks.

Strong lottery ticket hypothesis (SLTH) (Ramanujan et al. 2020)
There exist small sub-networks of large, randomly initialized neural networks
that perform well at initialization.
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Theory for fully connected networks

/ 74
Y, ()éf « 2L construction (Malach et al. 2020)
’  Subset sum approximation (Pensia et al. 2020)
.\.i...’. « L+1 construction, general activation functions (Burkholz 2022)
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Why would we need theory?

 Contemporary pruning algorithms cannot
find LTs in large, complex NN structures

(unless they resort to rewinding, ...).

* When do pruning algorithms have a
chance to succeed?



The quest for lottery tickets

Lottery ticket hypothesis (LTH) (Frankle and Carbin, 2019)
There exist small, well trainable sub-networks of
large, randomly initialized neural networks.

Strong lottery ticket hypothesis (SLTH) (Ramanujan et al. 2020)
There exist small sub-networks of large, randomly initialized neural networks
that perform well at initialization.

Theory for fully connected networks

« 2L construction (Malach et al. 2020)

 Subset sum approximation (Pensia et al. 2020)
 L+1 construction, general activation functions (Burkholz 2022)

Theory for common, complex architectures

- ConvNets with positive inputs and RelLUs (da Cunha et al. 2021)
 Here: ConvNets and ResNets for general inputs and act. functions
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Existence proof set-up

Sparse target network f;
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Existence proof set-up

Sparse target network f; Dense source network f;
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Existence proof set-up

Dense source network f,

Sparse target network f;
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Existence proof set-up

Sparse target network f; Sparse ticket network f; Dense source network f,
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LT existence

For every target f; with width ¢;, N, nonzero
params., and depth L, exists with prob. 1 — 0

a LT f. c f, that approx. f; up to error £ > (
if the random source f; has depth L, > L, +1

and width
ct IV

min{e, d}

Co = Ct Clog
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Subset sum approx.

e Lueker 1998, Pensia et al. 2020.

Given: = Target parameter 0; € [—1, 1]
n X1, .o, Xoppiid, Xp ~ U[—l, 1]
. £,0 € (O 1)

1
If: m > (C'log (min((S 5)>

Then:  With prob.1 — § exists@C 'm| s.t.

0, — ) Xi| <e
ke(s)

\‘, /’
S 14



Is that useful?

Best approximation

1000 m=15 | Xk ~ U[— Ye S !
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e Set sizes of m = 15

Smallest subset is more than sufficient.
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A convolutional layer
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Approximating a CNN layer
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Approximating a CNN layer

_ (1) l
Target o'V Wi by
z Ect,l—l 7 ¢
. * E 0 ! ”Ct l
. Ct,l—l n .””’Ct,l ,
Source




Approximating a CNN layer
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Approximating a CNN layer

_ (1) [
Target o'V Wi by
LT
X Q
""""""""" co+1 = m(ce + 1)
Co,l —

Q‘\"Il,
: 21



Approximating a CNN layer
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ResNet-22 target on CIFART0

* Proofs constructive.
» Defines algorithm to construct LTs that approx. given target.

TARGET LT LT (BEST 50%)
RELU 80.68 80.32 +0.13 80.69 £+ 0.09
LEAKY RELU 80.68 80.11 = 0.18 80.6 = 0.1
TANH 80.86 80.48 +0.13 80.8 = 0.1

SIGMOID 72.66 69 + 2 73.2 +0.9




Contributions

 Proofs of LT existence for:
« CNNs with and without skip

connections
» general inputs
- general activation functions
* L+1 (instead of 2L) source depth.

» Experimental validation of theory.

* Analysis of subset sum approx.:
 Width requirement by factor 9-15.




