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Symimetries
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D4RL S4RL - random shift
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Policy Optimization step Q-learning (CQL) Kumar et. al
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Empirical Tests - D4RL
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Empirical Results of KFC / KFC++

Task Name | CQL S4RL KFC KFC++

Gym 41.6 61.6 66.4 67.8
Antmaze 50.6 62.9 65.5 67.4
Adroit 11.7 19.4 23.8 24.3

Franka 46.8 85.9 93.2 95.4




Empirical Results of KFC / KFC++

Task Name | CQL S4RL KFC KFC++

Gym 416 61.6 664 67.8
Antmaze 506 629 65.5 67.4
Adroit 11:7 194 238 24.3
Franka 46.8 859 932 954
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