

An Asymptotic Test for Conditional Independence using Analytic Kernel Embeddings

M. Scetbon ^{*}

L. Meunier ^{*}

Y. Romano

FACEBOOK AI

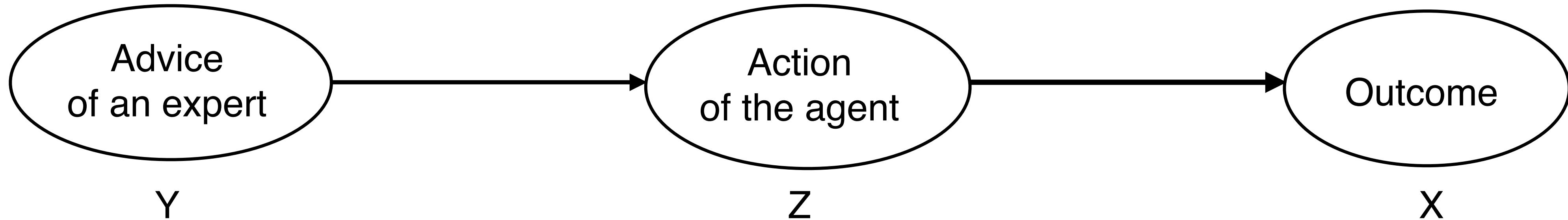
Dauphine | PSL
UNIVERSITÉ PARIS

Thirty-ninth International Conference on Machine Learning

^{*} Authors contributed equally.

Conditional Independence Testing

A Simple Example:



This graph shows that the outcome does not depend on the advice given the action taken by the agent:

$$X \perp\!\!\!\perp Y | Z$$

Question: How to infer from data such relationships between random variables?

Test for Conditional Independence:

Goal: Given i.i.d samples $(X_i, Z_i, Y_i)_{i=1}^n \sim P_{XZY}$ where P_{XZY} is the law of (X, Z, Y) a random vector, we aim at testing the null Hypothesis $H_0: X \perp\!\!\!\perp Y | Z$ against $H_1: X \not\perp\!\!\!\perp Y | Z$.

→ We design a new kernel-based test statistic to test for conditional independence

ℓ^p Distance Between Mean Embeddings

Definition:

Let k be a definite positive, characteristic, continuous, bounded and **analytic** kernel on \mathbb{R}^d and $p \geq 1$ an integer. Let also P, Q two probability distributions on \mathbb{R}^d and denote respectively $\mu_{P,k}$ and $\mu_{Q,k}$ their mean embeddings. Then

$$d_{p,J}(P, Q) := \left[\frac{1}{J} \sum_{j=1}^J |\mu_{P,k}(\mathbf{t}_j) - \mu_{Q,k}(\mathbf{t}_j)|^p \right]^{\frac{1}{p}}$$

where $(\mathbf{t}_j)_{j=1}^J$ are sampled independently from any absolutely continuous Borel probability measure is **random metric on the space of probability measures**.

A First Characterization of the Conditional Independence:

- Let $d_x, d_y, d_z \geq 1$, $\mathcal{X} := \mathbb{R}^{d_x}$, $\mathcal{Y} := \mathbb{R}^{d_y}$, and $\mathcal{Z} := \mathbb{R}^{d_z}$. Let (X, Z, Y) be a random vector on $\mathcal{X} \times \mathcal{Z} \times \mathcal{Y}$ with law P_{XZY} .
- Denote $\ddot{X} := (X, Z)$, $\ddot{\mathcal{X}} := \mathcal{X} \times \mathcal{Z}$ and let us define for all measurable $(A, B) \in \mathcal{B}(\ddot{\mathcal{X}}) \times \mathcal{B}(\mathcal{Y})$:

$$P_{\ddot{X} \otimes Y|Z}(A \times B) := \mathbb{E}_Z \left[\mathbb{E}_{\ddot{X}}[\mathbf{1}_A | Z] \mathbb{E}_Y[\mathbf{1}_B | Z] \right].$$

Proposition: $d_{p,J}(P_{XZY}, P_{\ddot{X} \otimes Y|Z}) = 0$ if and only if $X \perp Y|Z$ a.s.

A first Oracle Statistic

- For all $(\mathbf{t}^{(1)}, t^{(2)}) \in \ddot{\mathcal{X}} \times \mathcal{Y}$, we have $\mu_{P_{\ddot{X} \otimes Y|Z}, k_{\ddot{\mathcal{X}}} \cdot k_{\mathcal{Y}}}(\mathbf{t}^{(1)}, t^{(2)}) = \mathbb{E}_Z \left[\mathbb{E}_{\ddot{X}} \left[k_{\ddot{\mathcal{X}}}(\mathbf{t}^{(1)}, \ddot{X}) | Z \right] \mathbb{E}_Y \left[k_{\mathcal{Y}}(t^{(2)}, Y) | Z \right] \right]$
- For all $(\mathbf{t}^{(1)}, t^{(2)}) \in \ddot{\mathcal{X}} \times \mathcal{Y}$, we have $\mu_{P_{XZY}, k_{\ddot{\mathcal{X}}} \cdot k_{\mathcal{Y}}}(\mathbf{t}^{(1)}, t^{(2)}) = \mathbb{E} \left[k_{\ddot{\mathcal{X}}}(\mathbf{t}^{(1)}, \ddot{X}) k_{\mathcal{Y}}(t^{(2)}, Y) \right]$
- For all $(\mathbf{t}^{(1)}, t^{(2)}) \in \ddot{\mathcal{X}} \times \mathcal{Y}$, we define the witness function:

$$\Delta(\mathbf{t}^{(1)}, t^{(2)}) := \mu_{P_{\ddot{X} \otimes Y|Z}, k_{\ddot{\mathcal{X}}} \cdot k_{\mathcal{Y}}}(\mathbf{t}^{(1)}, t^{(2)}) - \mu_{P_{XZY}, k_{\ddot{\mathcal{X}}} \cdot k_{\mathcal{Y}}}(\mathbf{t}^{(1)}, t^{(2)})$$

Reformulation of the Witness Function:

$$\Delta(\mathbf{t}^{(1)}, t^{(2)}) = \mathbb{E} \left[\left(k_{\ddot{\mathcal{X}}}(\mathbf{t}^{(1)}, \ddot{X}) - \mathbb{E}_{\ddot{X}} \left[k_{\ddot{\mathcal{X}}}(\mathbf{t}^{(1)}, \ddot{X}) | Z \right] \right) \left(k_{\mathcal{Y}}(t^{(2)}, Y) - \mathbb{E}_Y \left[k_{\mathcal{Y}}(t^{(2)}, Y) | Z \right] \right) \right]$$

A First Estimate of the Witness Function:

$$\Delta_n(\mathbf{t}^{(1)}, t^{(2)}) = \frac{1}{n} \sum_{i=1}^n \left(k_{\ddot{\mathcal{X}}}(\mathbf{t}^{(1)}, \ddot{x}_i) - \mathbb{E}_{\ddot{X}} \left[k_{\ddot{\mathcal{X}}}(\mathbf{t}^{(1)}, \ddot{X}) | z_i \right] \right) \left(k_{\mathcal{Y}}(t^{(2)}, y_i) - \mathbb{E}_Y \left[k_{\mathcal{Y}}(t^{(2)}, Y) | z_i \right] \right)$$

Definition of Our Oracle Statistic

$$\text{Cl}_{n,p} := \sum_{j=1}^J \left| \Delta_n(\mathbf{t}_j^{(1)}, t_j^{(2)}) \right|^p$$

Asymptotic Distribution

Proposition:

- Under H_0 , $\sqrt{n} \text{Cl}_{n,p} \rightarrow \|X\|_p^p$ where $X \sim \mathcal{N}(0_J, \Sigma)$, $\Sigma := \mathbb{E}(\mathbf{u}_1 \mathbf{u}_1^T)$, $\mathbf{u}_1 := (u_1(1), \dots, u_1(J))^T$, $u_i(j) := \left(k_{\mathcal{X}}(\mathbf{t}_j^{(1)}, \ddot{x}_i) - \mathbb{E}_{\ddot{X}} \left[k_{\mathcal{X}}(\mathbf{t}_j^{(1)}, \ddot{X}) \mid Z = z_i \right] \right) \times \left(k_{\mathcal{Y}}(t_j^{(2)}, y_i) - \mathbb{E}_Y \left[k_{\mathcal{Y}}(t_j^{(2)}, Y) \mid Z = z_i \right] \right)$, and the convergence is in law.
- Under H_1 , $\lim_{n \rightarrow \infty} P(n^{p/2} \text{Cl}_{n,p} \geq q) = 1$ for any $q \in \mathbb{R}$.

Consistency of the test

Problems:

- The oracle statistic involves unknown conditional means: $\mathbb{E}_{\ddot{X}} \left[k_{\mathcal{X}}(\mathbf{t}_j^{(1)}, \ddot{X}) \mid Z = \cdot \right]$ and $\mathbb{E}_Y \left[k_{\mathcal{Y}}(t_j^{(2)}, Y) \mid Z = \cdot \right]$
- The asymptotic distributions involved an unknown covariance matrix Σ

Approximation of the Oracle Statistic

We estimate these conditional means using **Regularized Least-squares Estimators**:

$$h_{j,r}^{(2)} := \min_{h \in H_{\mathcal{Z}}^{2,j}} \frac{1}{r} \sum_{i=1}^r \left(h(z_i) - k_{\mathcal{Y}}(t_j^{(2)}, y_i) \right)^2 + \lambda_{j,r}^{(2)} \|h\|_{H_{\mathcal{Z}}^{2,j}}^2$$

$$h_{j,r}^{(1)} := \min_{h \in H_{\mathcal{Z}}^{1,j}} \frac{1}{r} \sum_{i=1}^r \left(h(z_i) - k_{\mathcal{X}}(\mathbf{t}_j^{(1)}, (x_i, z_i)) \right)^2 + \lambda_{j,r}^{(1)} \|h\|_{H_{\mathcal{Z}}^{1,j}}^2$$

Approximate Estimate of the Witness Function

$$\widetilde{\Delta}_{n,r}(\mathbf{t}_j^{(1)}, t_j^{(2)}) := \frac{1}{n} \sum_{i=1}^n \left(k_{\mathcal{X}}(\mathbf{t}_j^{(1)}, \ddot{x}_i) - h_{j,r}^{(1)}(z_i) \right) \times \left(k_{\mathcal{Y}}(t_j^{(2)}, y_i) - h_{j,r}^{(2)}(z_i) \right)$$

Definition of our Approximate Statistic

$$\widetilde{\text{CI}}_{n,r,p} := \sum_{j=1}^J \left| \widetilde{\Delta}_{n,r}(\mathbf{t}_j^{(1)}, t_j^{(2)}) \right|^p$$

Proposition:

Under some *mild assumptions* on the family of distributions considered and for well chosen r_n , we obtain:

- Under H_0 , $\sqrt{n} \widetilde{\text{CI}}_{n,r_n,p} \rightarrow \|X\|_p^p$ where $X \sim \mathcal{N}(0_J, \Sigma)$
- Under H_1 , $\lim_{n \rightarrow \infty} P(n^{p/2} \widetilde{\text{CI}}_{n,r_n,p} \geq q) = 1$ for any $q \in \mathbb{R}$.

It still involves the unknown covariance matrix

Normalized Version of Our Test Statistic

Denote $\widetilde{u}_{i,r}(j) := (k_{\mathcal{X}}(\mathbf{t}_j^{(1)}, \ddot{x}_i) - h_{j,r}^{(1)}(z_i))(k_{\mathcal{Y}}(t_j^{(2)}, y_i) - h_{j,r}^{(2)}(z_i))$, $\widetilde{\mathbf{S}}_{n,r} := \frac{1}{n} \sum_{i=1}^n \widetilde{\mathbf{u}}_{i,r}$ and $\Sigma_{n,r} := \frac{1}{n} \sum_{i=1}^n \widetilde{\mathbf{u}}_{i,r} \widetilde{\mathbf{u}}_{i,r}^T$

$$\widetilde{\text{NCI}}_{n,r,p} := \|(\Sigma_{n,r} + \delta_n \text{Id}_J)^{-1/2} \widetilde{\mathbf{S}}_{n,r}\|_p^p.$$

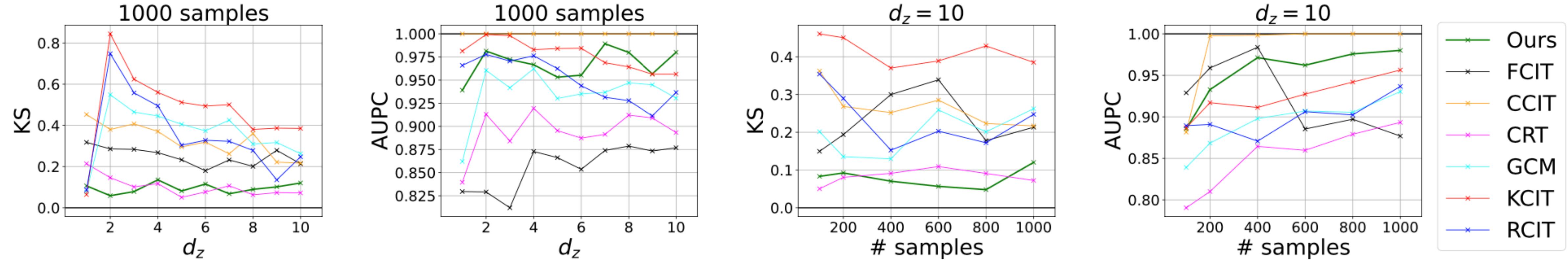
Proposition:

Under some *mild assumptions* on the family of distributions considered and for well chosen r_n , we obtain:

- Under H_0 , $\sqrt{n} \widetilde{\text{NCI}}_{n,r_n,p} \rightarrow \|X\|_p^p$ where $X \sim \mathcal{N}(0_J, \text{Id}_J)$
- Under H_1 , $\lim_{n \rightarrow \infty} P(n^{p/2} \widetilde{\text{NCI}}_{n,r_n,p} \geq q) = 1$ for any $q \in \mathbb{R}$.

Now we have a simple null asymptotic distribution

Experimental results



Results: We show that our test is the only one able to demonstrate that our method consistently controls the type-I error and obtains a power similar to the best SoTA tests.

Other results:

Thank you

We show experimentally our theoretical findings where our approximate statistic is able to recover the asymptotic distribution.

We show the effect of the parameter r which allows in practice to deal with the tradeoff between the computational time and the control of the type-I error.

We also explore the effects of p and J and show that our method is robust to the choice of p , and the performances of the test do not necessarily increase as J increases.