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Can neural network efficiently simulate Universal 

Turing Machine?
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• Implement stored-program principle
• Store the weights of neural networks as programs 

in memory
• Use multiple programs for multiple tasks 

(adaptive and not forgetting)
 E.g. NSM, MoE, ModuleNet
 Their programs are big, the number of stored 
parameters are huge, requiring big data for training
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Our solution: Neurocoder
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• A neural network stores small 
blocks (not the whole) of 
programs

• The small blocks compose the 
whole program just like small, 
sharable programs (e.g. libraries) 
are combined into a big program

• The composition is conditioned on 
the input data



Neurocoder: how it stores program
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• Instead of storing a weight matrix, 
it stores vectors and scalars 
representing the singular 
vectors/values of the matrix

• The weight matrix is composed by 
low-rank approximation from 
multiple singular vectors/values 
from the program memory



Neurocoder: how it reads program
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• Given input data, the controller 
generates queries

• The program memory maintains 
program status variables (Current 
memory usage, the program 
name/address/key)

• The query is matched with the key via 
contented-based attention (call a 
program by its name)

• The final reading location is a mixture 
of least-used and highly attended slots



Experiment: behaviours of Neurocoder
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#parameters 
is fewer than 
perceptron’s

Attention 
hierarchy as 
a binary tree

Auto-switch 
program 
when tasks 
change

Continual learning: 
program attention



Experiment: promising performance
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Continual learning

Multi-
algorithm 
reasoning

Hard 
reinforcement 
learning

Multi-function fitting
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