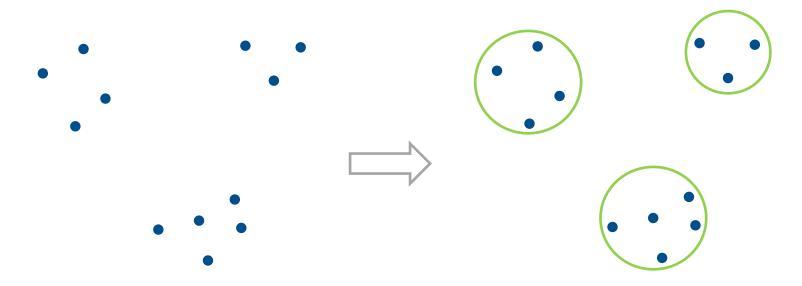
The Complexity of k-Means Clustering when Little is Known

Robert Ganian, Thekla Hamm, Viktoriia Korchemna, Karolina Okrasa, Kirill Simonov



Motivation

- Given the set of n points in d-dimensional space, group them into k clusters of "small size".
- One of the most impactful approaches in the area of data analysis and machine learning as a whole.

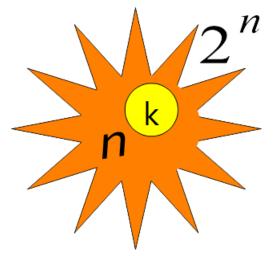
Means Clustering: Problem definition

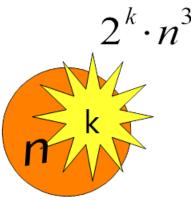
Input:	Matrix $A \in D^{n \times d}$ over a domain $D \subseteq R$, integers k and l .
Task:	Determine if there exists a matrix B over D containing at most k distinct rows such that $ B-A ^2 \leq l$

We consider the Frobenius norm:

$$\|A\|^2 = \sum_{i=1}^n \sum_{j=1}^d A[i,j]^2$$

Means Clustering with Missing Entries (MCME)

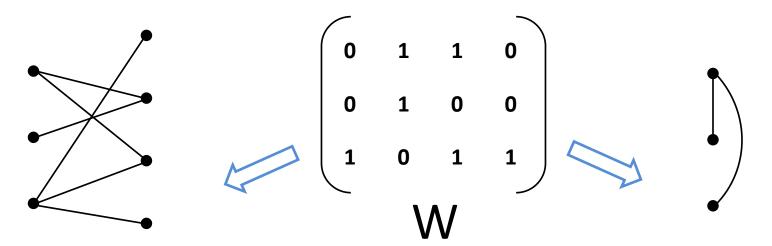

Input:	Matrix $A \in D^{n \times d}$ over a domain $D \subseteq R$, binary matrix W (the mask), integers k and l .
Task:	Determine if there exists a matrix B over D containing at most k distinct rows such that $\ \mathbf{W} \circ (B - A) \ ^2 \le l$.


BOUNDED-DOMAIN MCME is NP-complete (Drineas et al., 2004; Aloise et al., 2009).

Parameterized complexity -> more fine-grained look into the complexity of the problem

Fixed-Parameter Tractability

— Can we identify structural properties of input which suffice for tractability?



Definition: A problem is *fixed-parameter tractable (FPT)* when parameterized by an integer k (called the *parameter*) if it admits an algorithm with running time $f(k) \cdot n^{O(1)}$, where n is the size of the input and f is some computable function.

Input as a Graph

We use two graph representations of the mask W:

Incidence graph G_I

$$V_I = R_W \cup C_W$$
$$(i, j) \in E_I \Leftrightarrow W[i, j] = 1$$

Primal graph G_P

$$V_P = R_W$$

$$(i,j) \in E_P \Leftrightarrow (W[i], W[j]) > 0$$

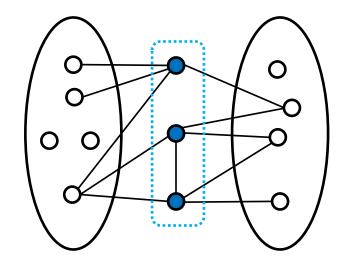
When Little is Known

- Eiben et al. (2021) and Ganian et al. (2018) obtained several fixed-parameter clustering algorithms by using a parameter called the *covering number*, which is the minimum number of rows and columns needed to cover all the unknown entries.
- What if most of the data is unknown or irrelevant?
- Can try: number of rows and columns to cover all the *known* entries = vertex cover number of G_I .
- In fact, we can do even better: treewidth of G_I

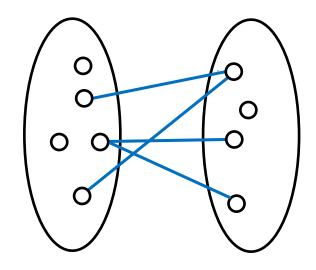
Treewidth

 Treewidth iteratively decomposes the input along small vertex separators

 The most general (the lest restrictive) **vertex** separator / deletion Treewidth based parameter Less restrictive Harder algorithms Linear sequence of small **Pathwidth** vertex separators More restrictive Feedback Easier algorithms Vertex Number Vertex elimination distance Treedepth to edgeless graphs Vertex deletion distance **Vertex Cover** Vertex deletion distance to edgeless graphs Number to acyclicity

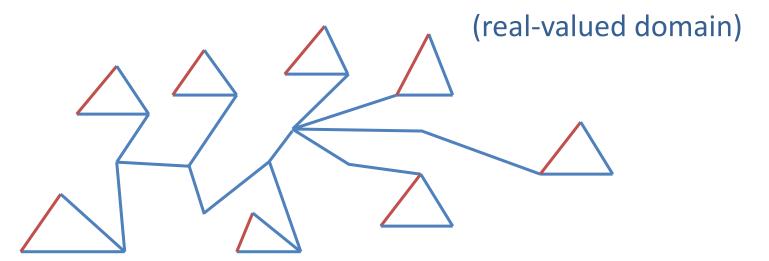

New FPT Results

- incidence treewidth = treewidth of G_I (bounded domain)
- primal treewidth = treewidth of G_P (more restrictive parameter, real-valued domain)


Is real-valued Means Clustering FPT when parameterized by d? -> long-standing open problem dating back to Inaba et al.'s celebrated XP algorithm parameterized by k + d (1994).

Another approach: small edge cuts

— What about structural parameters that guarantee small edge cuts?


small vertex separator

small edge-cut

New FPT Results

- incidence treewidth = treewidth of G_I (bounded domain)
- primal treewidth = treewidth of G_P (real-valued domain)
- local feedback edge number of G_I

Thank you for your attention!

