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Motivation

• Disentanglement is important, but there is no agreed-upon definition

• Higgins et al. (2018) provide a formal definition:

Linear Symmetry-Based Disentanglement (LSBD)

• Based on modelling symmetries of the real world, using group theory

Irina Higgins, et al. (2018) “Towards a Definition of Disentangled Representations”.
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Motivation

• Disentanglement is important, but there is no agreed-upon definition

• Higgins et al. (2018) provide a formal definition:

Linear Symmetry-Based Disentanglement (LSBD)

• Based on modelling symmetries of the real world, using group theory

• Observations from real world -> data

• Transformations in real world -> variation in data

Irina Higgins, et al. (2018) “Towards a Definition of Disentangled Representations”.
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1.There is no metric to quantify the level of LSBD in arbitrary representations

 Crucial for evaluation of LSBD methods, benchmarks

Challenges
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1.There is no metric to quantify the level of LSBD in arbitrary representations

 Crucial for evaluation of LSBD methods, benchmarks

2.The LSBD definition defines no method to obtain LSBD representations

 Some methods exist, but lack formal evaluation due to missing metric

Challenges
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Our contributions

1. 𝓓𝑳𝑺𝑩𝑫: a general metric that quantifies LSBD

 Follows the formal LSBD definition

 Works for any encoding and group structure (in theory)

 Practical implementation for common subgroup: SO(2)

𝒟𝐿𝑆𝐵𝐷 = 0.013 𝒟𝐿𝑆𝐵𝐷 = 1.179
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Our contributions

1. 𝓓𝑳𝑺𝑩𝑫: a general metric that quantifies LSBD

 Follows the formal LSBD definition

 Works for any encoding and group structure (in 
theory)

 Practical implementation for common subgroup: SO(2)

2. LSBD-VAE: a method to learn LSBD 
representations

 Idea: use 𝒟𝐿𝑆𝐵𝐷 as additional loss component in ΔVAE,

– (ΔVAE = VAE with suitable latent topology)

 Requires some assumptions (expert knowledge)
to ensure computability
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Results

1. Traditional disentanglement methods don’t learn LSBD representations
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Results

1. Traditional disentanglement methods don’t learn LSBD representations

2. LSBD-VAE and other LSBD methods can learn LSBD representations,
with limited supervision on transformations

3. LSBD representations also satisfy previous disentanglement notions (but not vice versa)
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Results

𝛽 −VAE Ours
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Conclusion

• We have devised a metric (𝒟𝐿𝑆𝐵𝐷) and method (LSBD-VAE) 

• We have shown that our method can learn LSBD representations with little supervision

• We have confirmed that traditional disentanglement models do not optimize for LSBD

• We demonstrate that LSBD satisfies previous notions of disentanglement, but also 

captures other desirable properties.
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See you at the poster session!

Thank you!


