Closed-Form Diffeomorphic Transformations for Time Series Alignment

Paper ID: 352

Iñigo Martinez¹, Elisabeth Viles^{2,3}, Igor G. Olaizola¹

¹ Vicomtech Foundation, Basque Research and Technology Alliance, Spain
² TECNUN School of Engineering, University of Navarra, Spain
³ Institute of Data Science and Artificial Intelligence, University of Navarra, Spain

Motivation

- Temporal misalignment impacts recognition and classification performance
- \triangleright Optimization problem: find set of warping functions ϕ that minimize temporal variability

Diffeomorphic Warping Functions

- Time series alignment methods call for highly expressive, differentiable and invertible warping functions, i.e. *diffeomorphisms*
- Diffeomorphic warping functions: generated via integration of velocity fields specified by an ODE

ODE
$$\frac{d\phi^{\theta}(x,t)}{dt} = v^{\theta}(\phi^{\theta}(x,t))$$

Integral Eq.
$$\phi^{\theta}(x,t) = x + \int_0^t v^{\theta}(\phi^{\theta}(x,\tau))d\tau$$

Optimizing Diffeomorphic Warping Functions

- Temporal Transformer Networks (TTN) can learn the optimal temporal transformations that enhance geometric invariance and minimize temporal variability
- However, neural networks that include diffeomorphic transformations require to calculate derivatives to the ODE's solution with respect to the model parameters.

$$\phi^{\theta}(x,t) = x + \int_0^t v^{\theta}(\phi^{\theta}(x,\tau))d\tau$$

$$\frac{\partial \phi^{\theta}(x,t))}{\partial \theta_k} = ?$$

- Current solutions appeal to
 - Adjoint sensitivity methods
 - ResNet's Eulerian discretization
 - Ad-hoc numerical solvers and automatic differentiation

Proposed Solution

- We formulate a closed-form expression for the gradient of 1D diffeomorphic transformations under continuous piecewise-affine (CPA) velocity functions.
 - Closed-form ODE solution (forward) $\phi^{\theta}(x,t)$
 - Closed-form gradient (backward)

• Fast computation for iterative gradient descent methods

 $\partial \phi^{\theta}(x,t))$

- Exact gradient leads to better solutions at convergence
- Shortens chain of operations and decreases tape overhead

Results: Performance

- Diffeomorphic Fast Warping DIFW library: highly optimized implementation of 1D diffeomorphic transformations on multiple backends for
 - CPU: NumPy and PyTorch with C++
 - GPU: PyTorch with CUDA

Speed tests: x18 / x260 and x10 / x30 improvement on CPU / GPU over current solutions for forward and backward operations respectively.

Results: Time Series Classification

- We integrate closed-form diffeomorphic transformations into a TTN for time series alignment and classification
- Results show significant improvement in terms of efficiency and accuracy

Results: Time Series Alignment

8

Closed-Form Diffeomorphic Transformations for Time Series Alignment

Paper ID: 352

Iñigo Martinez¹, Elisabeth Viles^{2,3}, Igor G. Olaizola¹

¹ Vicomtech Foundation, Basque Research and Technology Alliance, Spain
² TECNUN School of Engineering, University of Navarra, Spain
³ Institute of Data Science and Artificial Intelligence, University of Navarra, Spain

